In type theory, a typing rule is an inference rule that describes how a type system assigns a type to a syntactic construction. These rules may be applied by the type system to determine if a program is well-typed and what type expressions have. A prototypical example of the use of typing rules is in defining type inference in the simply typed lambda calculus, which is the internal language of Cartesian closed categories. Typing rules specify the structure of a typing relation that relates syntactic terms to their types. Syntactically, the typing relation is usually denoted by a colon, so for example denotes that an expression has type . The rules themselves are usually specified using the notation of natural deduction. For example, the following typing rules specify the typing relation for a simple language of booleans: Each rule states that the conclusion below the line may be derived from the premises above the line. The first two rules have no premises above the line, so they are axioms. The third rule has premises above the line (specifically, three premises), so it is an inference rule. In programming languages, the type of a variable depends on where it is bound, which necessitates context-sensitive typing rules. These rules are given by a typing judgment, usually written , which states that an expression has type under a typing context that relates variables to their types. This notation can be used to give typing rules for variable references and lambda abstraction in the simply typed lambda calculus: Similarly, the following typing rule describes the construct of Standard ML: Not all systems of typing rules directly specify a type checking algorithm. For example, the typing rule for applying a parametrically polymorphic function in the Hindley–Milner type system requires "guessing" the appropriate type at which the function should be instantiated. Adapting a declarative rule system to a decidable algorithm requires the production of a separate, algorithmic system that can be proven to specify the same typing relation.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
CS-452: Foundations of software
The course introduces the foundations on which programs and programming languages are built. It introduces syntax, types and semantics as building blocks that together define the properties of a progr
CS-320: Computer language processing
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
Séances de cours associées (10)
Écart : définition et règles de dactylographie
Explique les relations de variance, les règles de saisie des fonctions et les vérifications de variance dans Scala.
Types et relations inductives
Discute de l'importance des types, des systèmes de types malsains et des relations inductives pour le système de type d'un petit langage.
Featherweight Java: Core OO Fonctionnalités Modélisation
Introduit Featherweight Java, un modèle minimaliste pour représenter les principales fonctionnalités orientées objet.
Afficher plus
Publications associées (7)
Concepts associés (3)
Parametric polymorphism
In programming languages and type theory, parametric polymorphism allows a single piece of code to be given a "generic" type, using variables in place of actual types, and then instantiated with particular types as needed. Parametrically polymorphic functions and data types are sometimes called generic functions and generic datatypes, respectively, and they form the basis of generic programming. Parametric polymorphism may be contrasted with ad hoc polymorphism.
Subtyping
In programming language theory, subtyping (also subtype polymorphism or inclusion polymorphism) is a form of type polymorphism in which a subtype is a datatype that is related to another datatype (the supertype) by some notion of substitutability, meaning that program elements, typically subroutines or functions, written to operate on elements of the supertype can also operate on elements of the subtype. If S is a subtype of T, the subtyping relation (written as S
Théorie des types
En mathématiques, logique et informatique, une théorie des types est une classe de systèmes formels, dont certains peuvent servir d'alternatives à la théorie des ensembles comme fondation des mathématiques. Ils ont été historiquement introduits pour résoudre le paradoxe d'un axiome de compréhension non restreint. En théorie des types, il existe des types de base et des constructeurs (comme celui des fonctions ou encore celui du produit cartésien) qui permettent de créer de nouveaux types à partir de types préexistant.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.