Summary
An incremental encoder is a linear or rotary electromechanical device that has two output signals, A and B, which issue pulses when the device is moved. Together, the A and B signals indicate both the occurrence of and direction of movement. Many incremental encoders have an additional output signal, typically designated index or Z, which indicates the encoder is located at a particular reference position. Also, some encoders provide a status output (typically designated alarm) that indicates internal fault conditions such as a bearing failure or sensor malfunction. Unlike an absolute encoder, an incremental encoder does not indicate absolute position; it only reports changes in position and, for each reported position change, the direction of movement. Consequently, to determine absolute position at any particular moment, it is necessary to send the encoder signals to an incremental encoder interface, which in turn will "track" and report the encoder's absolute position. Incremental encoders report position changes nearly instantaneously, which allows them to monitor the movements of high speed mechanisms in near real-time. Because of this, incremental encoders are commonly used in applications that require precise measurement and control of position and velocity. An incremental encoder employs a quadrature encoder to generate its A and B output signals. The pulses emitted from the A and B outputs are quadrature-encoded, meaning that when the incremental encoder is moving at a constant velocity, the A and B waveforms are square waves and there is a 90 degree phase difference between A and B. At any particular time, the phase difference between the A and B signals will be positive or negative depending on the encoder's direction of movement. In the case of a rotary encoder, the phase difference is +90° for clockwise rotation and −90° for counter-clockwise rotation, or vice versa, depending on the device design.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
COM-102: Advanced information, computation, communication II
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
Related publications (1)
Related concepts (1)
Computer mouse
A computer mouse (plural mice, also mouses) is a hand-held pointing device that detects two-dimensional motion relative to a surface. This motion is typically translated into the motion of the pointer (called a cursor) on a display, which allows a smooth control of the graphical user interface of a computer. The first public demonstration of a mouse controlling a computer system was in 1968. Mice originally used two separate wheels to directly track movement across a surface: one in the X-dimension and one in the Y.