Summary
The thorium fuel cycle is a nuclear fuel cycle that uses an isotope of thorium, , as the fertile material. In the reactor, is transmuted into the fissile artificial uranium isotope which is the nuclear fuel. Unlike natural uranium, natural thorium contains only trace amounts of fissile material (such as ), which are insufficient to initiate a nuclear chain reaction. Additional fissile material or another neutron source is necessary to initiate the fuel cycle. In a thorium-fuelled reactor, absorbs neutrons to produce . This parallels the process in uranium breeder reactors whereby fertile absorbs neutrons to form fissile . Depending on the design of the reactor and fuel cycle, the generated either fissions in situ or is chemically separated from the used nuclear fuel and formed into new nuclear fuel. The thorium fuel cycle has several potential advantages over a uranium fuel cycle, including thorium's greater abundance, superior physical and nuclear properties, reduced plutonium and actinide production, and better resistance to nuclear weapons proliferation when used in a traditional light water reactor though not in a molten salt reactor. Concerns about the limits of worldwide uranium resources motivated initial interest in the thorium fuel cycle. It was envisioned that as uranium reserves were depleted, thorium would supplement uranium as a fertile material. However, for most countries uranium was relatively abundant and research in thorium fuel cycles waned. A notable exception was India's three-stage nuclear power programme. In the twenty-first century thorium's claimed potential for improving proliferation resistance and waste characteristics led to renewed interest in the thorium fuel cycle. While thorium is more abundant in the continental crust than uranium and easily extracted from monazite as a side product of rare earth element mining, it is much less abundant in seawater than uranium. At Oak Ridge National Laboratory in the 1960s, the Molten-Salt Reactor Experiment used as the fissile fuel in an experiment to demonstrate a part of the Molten Salt Breeder Reactor that was designed to operate on the thorium fuel cycle.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.