In computer programming, a postcondition is a condition or predicate that must always be true just after the execution of some section of code or after an operation in a formal specification. Postconditions are sometimes tested using assertions within the code itself. Often, postconditions are simply included in the documentation of the affected section of code. For example: The result of a factorial is always an integer and greater than or equal to 1. So a program that calculates the factorial of an input number would have postconditions that the result after the calculation be an integer and that it be greater than or equal to 1. Another example: a program that calculates the square root of an input number might have the postconditions that the result be a number and that its square be equal to the input. In some software design approaches, postconditions, along with preconditions and class invariants, are components of the software construction method design by contract. The postcondition for any routine is a declaration of the properties which are guaranteed upon completion of the routine's execution. As it relates to the routine's contract, the postcondition offers assurance to potential callers that in cases in which the routine is called in a state in which its precondition holds, the properties declared by the postcondition are assured. The following example written in Eiffel sets the value of a class attribute hour based on a caller-provided argument a_hour. The postcondition follows the keyword ensure. In this example, the postcondition guarantees, in cases in which the precondition holds (i.e., when a_hour represents a valid hour of the day), that after the execution of set_hour, the class attribute hour will have the same value as a_hour. The tag "hour_set:" describes this postcondition clause and serves to identify it in case of a runtime postcondition violation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
CS-550: Formal verification
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.