In mathematics, a binary relation associates elements of one set, called the domain, with elements of another set, called the codomain. A binary relation over sets X and Y is a new set of ordered pairs (x, y) consisting of elements x in X and y in Y. It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element x is related to an element y, if and only if the pair (x, y) belongs to the set of ordered pairs that defines the binary relation. A binary relation is the most studied special case n = 2 of an n-ary relation over sets X1, ..., Xn, which is a subset of the Cartesian product
An example of a binary relation is the "divides" relation over the set of prime numbers and the set of integers , in which each prime p is related to each integer z that is a multiple of p, but not to an integer that is not a multiple of p. In this relation, for instance, the prime number 2 is related to numbers such as −4, 0, 6, 10, but not to 1 or 9, just as the prime number 3 is related to 0, 6, and 9, but not to 4 or 13.
Binary relations are used in many branches of mathematics to model a wide variety of concepts. These include, among others:
the "is greater than", "is equal to", and "divides" relations in arithmetic;
the "is congruent to" relation in geometry;
the "is adjacent to" relation in graph theory;
the "is orthogonal to" relation in linear algebra.
A function may be defined as a special kind of binary relation. Binary relations are also heavily used in computer science.
A binary relation over sets X and Y is an element of the power set of Since the latter set is ordered by inclusion (⊆), each relation has a place in the lattice of subsets of A binary relation is called a homogeneous relation when X = Y. A binary relation is also called a heterogeneous relation when it is not necessary that X = Y.
Since relations are sets, they can be manipulated using set operations, including union, intersection, and complementation, and satisfying the laws of an algebra of sets.