The platinum-group metals (abbreviated as the PGMs; alternatively, the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs)) are six noble, precious metallic elements clustered together in the periodic table. These elements are all transition metals in the d-block (groups 8, 9, and 10, periods 5 and 6). The six platinum-group metals are ruthenium, rhodium, palladium, osmium, iridium, and platinum. They have similar physical and chemical properties, and tend to occur together in the same mineral deposits. However, they can be further subdivided into the iridium-group platinum-group elements (IPGEs: Os, Ir, Ru) and the palladium-group platinum-group elements (PPGEs: Rh, Pt, Pd) based on their behaviour in geological systems. The three elements above the platinum group in the periodic table (iron, nickel and cobalt) are all ferromagnetic; these, together with the lanthanide element gadolinium (at temperatures below 20 °C), are the only known transition metals that display ferromagnetism near room temperature. Naturally occurring platinum and platinum-rich alloys were known by pre-Columbian Americans for many years. However, even though the metal was used by pre-Columbian peoples, the first European reference to platinum appears in 1557 in the writings of the Italian humanist Julius Caesar Scaliger (1484–1558) as a description of a mysterious metal found in Central American mines between Darién (Panama) and Mexico ("up until now impossible to melt by any of the Spanish arts"). The name platinum is derived from the Spanish word platina “little silver", the name given to the metal by Spanish settlers in Colombia. They regarded platinum as an unwanted impurity in the silver they were mining. By 1815, rhodium and palladium had been discovered by William Hyde Wollaston, and iridium and osmium by his close friend and collaborator Smithson Tennant. The platinum metals have many useful catalytic properties.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
ME-251: Thermodynamics and energetics I
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
MSE-422: Advanced metallurgy
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Show more
Related lectures (38)
Platinum Drugs for Cancer: How They Work
Explores the mechanism of platinum-based cancer drugs and the cross-coupling catalysis of metals in modifying aromatic compounds.
Group Theory: Definition and Examples
Covers the definition of a group, properties of symmetries, and group operations.
Chemical Equilibrium and Thermodynamics
Provides a summary of chemistry, covering atomic behavior, periodic elements, and chemical equilibrium.
Show more
Related publications (163)

Probing Catalytic Sites and Adsorbate Spillover on Ultrathin FeO2-x Film on Ir(111) during CO Oxidation

Harald Brune, Hao Yin, Wei Fang

The spatially resolved identification of active sites on the heterogeneous catalyst surface is an essential step toward directly visualizing a catalytic reaction with atomic scale. To date, ferrous centers on platinum group metals have shown promising pote ...
Washington2024

Membrane electrode assembly simulation of anion exchange membrane water electrolysis

Jan Van Herle, Suhas Nuggehalli Sampathkumar, Khaled Lawand, Zoé Mury

Anion exchange membrane water electrolysis (AEMWE) offers a green hydrogen production method that eliminates the need for platinum group metals (PGM) as electrocatalysts. This study employs a COMSOL (R) 6.0 model to simulate a 1x1 cm(2) Ni fibre - Raney (R ...
Amsterdam2024

Simultaneous local sensing of two chemical properties with dual soft probe scanning electrochemical microscopy

Hubert Girault, Andreas Stephan Lesch, Gregorio Bonazza

A new method for the rapid and economic fabrication of dual soft microelectrodes for Soft-Probe-Scanning electrochemical microscopy (Soft-Probe-SECM) and their use for the simultaneous local detection of locally generated species is presented. The process ...
PERGAMON-ELSEVIER SCIENCE LTD2023
Show more
Related concepts (24)
Precious metal
Precious metals are rare, naturally occurring metallic chemical elements of high economic value. Chemically, the precious metals tend to be less reactive than most elements (see noble metal). They are usually ductile and have a high lustre. Historically, precious metals were important as currency but are now regarded mainly as investment and industrial raw materials. Gold, silver, platinum, and palladium each have an ISO 4217 currency code. The best known precious metals are the coinage metals, which are gold and silver.
Post-transition metal
The metallic elements in the periodic table located between the transition metals to their left and the chemically weak nonmetallic metalloids to their right have received many names in the literature, such as post-transition metals, poor metals, other metals, p-block metals and chemically weak metals. The most common name, post-transition metals, is generally used in this article. Physically, these metals are soft (or brittle), have poor mechanical strength, and usually have melting points lower than those of the transition metals.
Bushveld Igneous Complex
The Bushveld Igneous Complex (BIC) is the largest layered igneous intrusion within the Earth's crust. It has been tilted and eroded forming the outcrops around what appears to be the edge of a great geological basin: the Transvaal Basin. It is approximately 2 billion years old and is divided into four different limbs: the northern, southern, eastern, and western limbs. The Bushveld Complex comprises the Rustenburg Layered suite, the Lebowa Granites and the Rooiberg Felsics, that are overlain by the Karoo sediments.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.