Concept

Generalized quadrangle

In geometry, a generalized quadrangle is an incidence structure whose main feature is the lack of any triangles (yet containing many quadrangles). A generalized quadrangle is by definition a polar space of rank two. They are the generalized n-gons with n = 4 and near 2n-gons with n = 2. They are also precisely the partial geometries pg(s,t,α) with α = 1. A generalized quadrangle is an incidence structure (P,B,I), with I ⊆ P × B an incidence relation, satisfying certain axioms. Elements of P are by definition the points of the generalized quadrangle, elements of B the lines. The axioms are the following: There is an s (s ≥ 1) such that on every line there are exactly s + 1 points. There is at most one point on two distinct lines. There is a t (t ≥ 1) such that through every point there are exactly t + 1 lines. There is at most one line through two distinct points. For every point p not on a line L, there is a unique line M and a unique point q, such that p is on M, and q on M and L. (s,t) are the parameters of the generalized quadrangle. The parameters are allowed to be infinite. If either s or t is one, the generalized quadrangle is called trivial. For example, the 3x3 grid with P = {1,2,3,4,5,6,7,8,9} and B = {123, 456, 789, 147, 258, 369} is a trivial GQ with s = 2 and t = 1. A generalized quadrangle with parameters (s,t) is often denoted by GQ(s,t). The smallest non-trivial generalized quadrangle is GQ(2,2), whose representation has been dubbed "the doily" by Stan Payne in 1973. There are two interesting graphs that can be obtained from a generalized quadrangle. The collinearity graph having as vertices the points of a generalized quadrangle, with the collinear points connected. This graph is a strongly regular graph with parameters ((s+1)(st+1), s(t+1), s-1, t+1) where (s,t) is the order of the GQ. The incidence graph whose vertices are the points and lines of the generalized quadrangle and two vertices are adjacent if one is a point, the other a line and the point lies on the line.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (2)
Incidence geometry
In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An incidence structure is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure.
Graphe de Levi
En mathématiques, et plus particulièrement en combinatoire, un graphe de Levi ou graphe d'incidence est un graphe biparti associé à une structure d'incidence. À partir d'un ensemble de points et de droites dans une géométrie d'incidence ou une configuration géométrique, on forme un graphe avec un sommet par point, un sommet par droite et une arête pour chaque incidence entre un point et une droite. Ces graphes sont nommés d'après Friedrich Wilhelm Levi, qui les a décrit dans des publications en 1942.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.