A magnetic mirror, known as a magnetic trap (магнитный захват) in Russia and briefly as a pyrotron in the US, is a type of magnetic confinement fusion device used in fusion power to trap high temperature plasma using magnetic fields. The mirror was one of the earliest major approaches to fusion power, along with the stellarator and z-pinch machines.
In a classic magnetic mirror, a configuration of electromagnets is used to create an area with an increasing density of magnetic field lines at either end of a confinement volume. Particles approaching the ends experience an increasing force that eventually causes them to reverse direction and return to the confinement area. This mirror effect will occur only for particles within a limited range of velocities and angles of approach, while those outside the limits will escape, making mirrors inherently "leaky".
An analysis of early fusion devices by Edward Teller pointed out that the basic mirror concept is inherently unstable. In 1960, Soviet researchers introduced a new "minimum-B" configuration to address this, which was then modified by UK researchers into the "baseball coil" and by the US to "yin-yang magnet" layout. Each of these introductions led to further increases in performance, damping out various instabilities, but requiring ever-larger magnet systems. The tandem mirror concept, developed in the US and Russia at about the same time, offered a way to make energy-positive machines without requiring enormous magnets and power input.
By the late 1970s, many of the design problems were considered solved, and Lawrence Livermore Laboratory began the design of the Mirror Fusion Test Facility (MFTF) based on these concepts. The machine was completed in 1986, but by this time, experiments on the smaller Tandem Mirror Experiment revealed new problems. In a round of budget cuts, MFTF was mothballed, and eventually scrapped. A fusion reactor concept called the Bumpy torus made use of a series of magnetic mirrors joined in a ring. It was investigated at the Oak Ridge National Laboratory until 1986.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the characteristics of typical plasmas from interstellar space to solar corona, discussing temperature, number density, collision processes, and properties.
Explores high-temperature superconductors and their industrial applications, focusing on the key role of Rebco in compact fusion reactors and high-field magnets.
To provide an overview of the fundamentals of magnetic confinement (MC) of plasmas for fusion.The different MC configurations are presented, with a description of their operating regimes.The basic ele
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
The goal of the course is to provide the physics and technology basis for controlled fusion research, from the main elements of plasma physics to the reactor concepts.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2023, no device has reached net power. Fusion processes require fuel and a confined environment with sufficient temperature, pressure, and confinement time to create a plasma in which fusion can occur.
Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development. Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy.
A pinch (or: Bennett pinch (after Willard Harrison Bennett), electromagnetic pinch, magnetic pinch, pinch effect, or plasma pinch.) is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power. Pinches occur naturally in electrical discharges such as lightning bolts, planetary auroras, current sheets, and solar flares.
Local gyrokinetic simulations are used to model turbulent transport for the first time in a representative high-performance plasma discharge projected for the new JT-60SA tokamak. The discharge features a double-null separatrix, 41 MW of combined neutral b ...
In magnetic fusion devices, error field (EF) sources, spurious magnetic field perturbations, need to be identified and corrected for safe and stable (disruption-free) tokamak operation. Within Work Package Tokamak Exploitation RT04, a series of studies hav ...
Iop Publishing Ltd2024
, , ,
Reinforcement learning (RL) has shown promising results for real-time control systems, including the domain of plasma magnetic control. However, there are still significant drawbacks compared to traditional feedback control approaches for magnetic confinem ...