Concept

Hyperaccumulator

Summary
A hyperaccumulator is a plant capable of growing in soil or water with very high concentrations of metals, absorbing these metals through their roots, and concentrating extremely high levels of metals in their tissues. The metals are concentrated at levels that are toxic to closely related species not adapted to growing on the metalliferous soils. Compared to non-hyperaccumulating species, hyperaccumulator roots extract the metal from the soil at a higher rate, transfer it more quickly to their shoots, and store large amounts in leaves and roots. The ability to hyperaccumulate toxic metals compared to related species has been shown to be due to differential gene expression and regulation of the same genes in both plants. Hyperaccumulating plants are of interest for their ability to extract metals from the soils of contaminated sites (phytoremediation) to return the ecosystem to a less toxic state. The plants also hold potential to be used to mine metals from soils with very high concentrations (phytomining) by growing the plants, then harvesting them for the metals in their tissues. The genetic advantage of hyperaccumulation of metals may be that the toxic levels of heavy metals in leaves deter herbivores or increase the toxicity of other anti-herbivory metabolites. Metals are predominantly accumulated in the roots causing an unbalanced shoot to root ratio of metal concentrations in most plants. However, in hyperaccumulators, the shoot to root ratio of metal concentrations are abnormally higher in the leaves and much lower in the roots. As this process occurs, metals are efficiently shuttled from the root to the shoot as an enhanced ability in order to protect the roots from metal toxicity. Delving into tolerance: Throughout the research of hyperaccumulation, there is a conundrum with tolerance. There are several different understandings of tolerance associated with accumulation; however, there are a few similarities. Evidence has conveyed that the traits of tolerance and accumulation are separate to each other and are moderated by genetic and physiological mechanisms.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.