In mathematics, a piecewise-defined function (also called a piecewise function, a hybrid function, or definition by cases) is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain. Piecewise definition is actually a way of expressing the function, rather than a characteristic of the function itself. A distinct, but related notion is that of a property holding piecewise for a function, used when the domain can be divided into intervals on which the property holds. Unlike for the notion above, this is actually a property of the function itself. A piecewise linear function (which happens to be also continuous) is depicted as an example. Piecewise functions can be defined using the common functional notation, where the body of the function is an array of functions and associated subdomains. These subdomains together must cover the whole domain; often it is also required that they are pairwise disjoint, i.e. form a partition of the domain. In order for the overall function to be called "piecewise", the subdomains are usually required to be intervals (some may be degenerated intervals, i.e. single points or unbounded intervals). For bounded intervals, the number of subdomains is required to be finite, for unbounded intervals it is often only required to be locally finite. For example, consider the piecewise definition of the absolute value function: For all values of less than zero, the first sub-function () is used, which negates the sign of the input value, making negative numbers positive. For all values of greater than or equal to zero, the second sub-function is used, which evaluates trivially to the input value itself. The following table documents the absolute value function at certain values of : In order to evaluate a piecewise-defined function at a given input value, the appropriate subdomain needs to be chosen in order to select the correct sub-function—and produce the correct output value.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-101(d): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
COM-502: Dynamical system theory for engineers
Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
Show more
Related lectures (41)
Numerical Methods: Weak Variational Form and Integration by Parts
Explores approximation methods and weak variational forms in numerical methods.
Finite Element Method: Global Approach
Explores the finite element method's global approach, including shape functions and systematization.
Spline Interpolation: Definition and Error Analysis
Explains spline interpolation and error analysis in approximating data points using piecewise linear and spline methods.
Show more
Related publications (84)

On the number of regions of piecewise linear neural networks

Michaël Unser, Alexis Marie Frederic Goujon

Many feedforward neural networks (NNs) generate continuous and piecewise-linear (CPWL) mappings. Specifically, they partition the input domain into regions on which the mapping is affine. The number of these so-called linear regions offers a natural metric ...
2024

PROBING INTRACELLULAR ELASTICITY WITH MINIMAL-HESSIAN REGISTRATION

Michaël Unser

We propose an image-based elastography method to measure the heterogeneous stiffness inside a cell and its nucleus. It uses a widely accessible setup consisting of plate compression imaged with fluorescence microscopy. Our framework recovers a spatial map ...
New York2023

Stable parameterization of continuous and piecewise-linear functions

Michaël Unser, Alexis Marie Frederic Goujon, Joaquim Gonçalves Garcia Barreto Campos

Rectified-linear-unit (ReLU) neural networks, which play a prominent role in deep learning, generate continuous and piecewise-linear (CPWL) functions. While they provide a powerful parametric representation, the mapping between the parameter and function s ...
2023
Show more
Related concepts (7)
Piecewise linear function
In mathematics and statistics, a piecewise linear, PL or segmented function is a real-valued function of a real variable, whose graph is composed of straight-line segments. A piecewise linear function is a function defined on a (possibly unbounded) interval of real numbers, such that there is a collection of intervals on each of which the function is an affine function. (Thus "piecewise linear" is actually defined to mean "piecewise affine".
Spline (mathematics)
In mathematics, a spline is a special function defined piecewise by polynomials. In interpolating problems, spline interpolation is often preferred to polynomial interpolation because it yields similar results, even when using low degree polynomials, while avoiding Runge's phenomenon for higher degrees. In the computer science subfields of computer-aided design and computer graphics, the term spline more frequently refers to a piecewise polynomial (parametric) curve.
Sign function
In mathematics, the sign function or signum function (from signum, Latin for "sign") is a function that returns the sign of a real number. In mathematical notation the sign function is often represented as . The signum function of a real number is a piecewise function which is defined as follows: Any real number can be expressed as the product of its absolute value and its sign function: It follows that whenever is not equal to 0 we have Similarly, for any real number , We can also ascertain that: The signum function is the derivative of the absolute value function, up to (but not including) the indeterminacy at zero.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.