In computer security, challenge–response authentication is a family of protocols in which one party presents a question ("challenge") and another party must provide a valid answer ("response") to be authenticated.
The simplest example of a challenge–response protocol is password authentication, where the challenge is asking for the password and the valid response is the correct password.
An adversary who can eavesdrop on a password authentication can then authenticate itself by reusing the intercepted password. One solution is to issue multiple passwords, each of them marked with an identifier. The verifier can then present an identifier, and the prover must respond with the correct password for that identifier. Assuming that the passwords are chosen independently, an adversary who intercepts one challenge–response message pair has no clues to help with a different challenge at a different time.
For example, when other communications security methods are unavailable, the U.S. military uses the AKAC-1553 TRIAD numeral cipher to authenticate and encrypt some communications. TRIAD includes a list of three-letter challenge codes, which the verifier is supposed to choose randomly from, and random three-letter responses to them. For added security, each set of codes is only valid for a particular time period which is ordinarily 24 hours.
A more interesting challenge–response technique works as follows. Say Bob is controlling access to some resource. Alice comes along seeking entry. Bob issues a challenge, perhaps "52w72y". Alice must respond with the one string of characters which "fits" the challenge Bob issued. The "fit" is determined by an algorithm agreed upon by Bob and Alice. (The correct response might be as simple as "63x83z", with the algorithm changing each character of the challenge using a Caesar cipher. In the real world, the algorithm would be much more complex.) Bob issues a different challenge each time, and thus knowing a previous correct response (even if it is not "hidden" by the means of communication used between Alice and Bob) is of no use.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mutual authentication or two-way authentication (not to be confused with two-factor authentication) refers to two parties authenticating each other at the same time in an authentication protocol. It is a default mode of authentication in some protocols (IKE, SSH) and optional in others (TLS). Mutual authentication is a desired characteristic in verification schemes that transmit sensitive data, in order to ensure data security. Mutual authentication can be accomplished with two types of credentials: usernames and passwords, and public key certificates.
Disk encryption is a technology which protects information by converting it into code that cannot be deciphered easily by unauthorized people or processes. Disk encryption uses disk encryption software or hardware to encrypt every bit of data that goes on a disk or disk volume. It is used to prevent unauthorized access to data storage. The expression full disk encryption (FDE) (or whole disk encryption) signifies that everything on the disk is encrypted, but the master boot record (MBR), or similar area of a bootable disk, with code that starts the operating system loading sequence, is not encrypted.
A replay attack (also known as a repeat attack or playback attack) is a form of network attack in which valid data transmission is maliciously or fraudulently repeated or delayed. This is carried out either by the originator or by an adversary who intercepts the data and re-transmits it, possibly as part of a spoofing attack by IP packet substitution. This is one of the lower-tier versions of a man-in-the-middle attack. Replay attacks are usually passive in nature.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
This course provides an overview of information security and privacy topics. It introduces students to the knowledge and tools they will need to deal with the security/privacy challenges they are like
This is an introductory course to computer security and privacy. Its goal is to provide students with means to reason about security and privacy problems, and provide them with tools to confront them.
Explores access control and password-based cryptography, including challenges, biometrics, and the biometric passport case study.
Explores trust establishment in cryptography and security, covering secure channels, PKI vulnerabilities, and diverse cryptographic models.
Explores message authentication codes and their formalism, with a focus on mobile telephony, covering topics like misuse attacks, security notions, and GSM architecture.
Authenticated Encryption (AE) is a symmetric key cryptographic primitive that ensures confidentiality and authenticity of processed messages at the same time. The research
of AE as a primitive in its own right started in 2000.The security goals of AE wer ...
Bluetooth (BR/EDR) is a pervasive technology for wireless communication used by billions of devices. The Bluetooth standard includes a legacy authentication procedure and a secure authentication procedure, allowing devices to authenticate to each other usi ...
IEEE COMPUTER SOC2020
,
The Competition for Authenticated Encryption: Security, Applicability and Robustness (CAESAR) has as its official goal to “identify a portfolio of authenticated ciphers that offer advantages over [the Galois-Counter Mode with AES]” and are suitable for wid ...