Concept

Mitochondrial permeability transition pore

Summary
The mitochondrial permeability transition pore (mPTP or MPTP; also referred to as PTP, mTP or MTP) is a protein that is formed in the inner membrane of the mitochondria under certain pathological conditions such as traumatic brain injury and stroke. Opening allows increase in the permeability of the mitochondrial membranes to molecules of less than 1500 Daltons in molecular weight. Induction of the permeability transition pore, mitochondrial membrane permeability transition (mPT or MPT), can lead to mitochondrial swelling and cell death through apoptosis or necrosis depending on the particular biological setting. The MPTP was originally discovered by Haworth and Hunter in 1979 and has been found to be involved in neurodegeneration, hepatotoxicity from Reye-related agents, cardiac necrosis and nervous and muscular dystrophies among other deleterious events inducing cell damage and death. MPT is one of the major causes of cell death in a variety of conditions. For example, it is key in neuronal cell death in excitotoxicity, in which overactivation of glutamate receptors causes excessive calcium entry into the cell. MPT also appears to play a key role in damage caused by ischemia, as occurs in a heart attack and stroke. However, research has shown that the MPT pore remains closed during ischemia, but opens once the tissues are reperfused with blood after the ischemic period, playing a role in reperfusion injury. MPT is also thought to underlie the cell death induced by Reye's syndrome, since chemicals that can cause the syndrome, like salicylate and valproate, cause MPT. MPT may also play a role in mitochondrial autophagy. Cells exposed to toxic amounts of Ca2+ ionophores also undergo MPT and death by necrosis. While the MPT modulation has been widely studied, little is known about its structure. Initial experiments by Szabó and Zoratti proposed the MPT may comprise Voltage Dependent Anion Channel (VDAC) molecules. Nevertheless, this hypothesis was shown to be incorrect as VDAC−/− mitochondria were still capable to undergo MPT.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (2)
Power Series and Taylor Series
Explores power series, Taylor series, convergence criteria, and applications in mathematics.
Show more
Related publications (12)

Multitarget-Directed Gallium(III) Tris(acyl-pyrazolonate) Complexes Induce Ferroptosis in Cancer Cells via Dysregulation of Cell Redox Homeostasis and Inhibition of the Mevalonate Pathway

Farzaneh Fadaei Tirani

A series of Ga(Q(n))(3) coordination compounds have been synthesized, where HQ(n) is 1-phenyl-3-methyl-4-RC(=O)-pyrazolo-5-one. The complexes have been characterized through analytical data, NMR and IR spectroscopy, ESI mass spectrometry, elemental analysi ...
AMER CHEMICAL SOC2023

Stimulation and homogenization of the protoporphyrin IX endogenous production by photobiomodulation to increase the potency of photodynamic therapy

Georges Wagnières, Jaroslava Joniová, Emmanuel Louis Arthur Gerelli, Cyrus Kazemiraad

Protoporphyrin IX (PpIX) is produced in the mitochondria and used as fluorescent contrast agent or photosensitizer after exogenous 5-aminolevulinic acid (ALA) delivery in cancer photodynamic detection and therapy (PDT). Although routinely used in the clini ...
ELSEVIER SCIENCE SA2021

Investigation of cell death mechanisms in human lymphatic endothelial cells undergoing photodynamic therapy

Witold Waldemar Kilarski

Background: Photodynamic therapy (PDT) has been shown to induce ablation and functional occlusion of tumor-associated lymphatic vessels. However, direct effects of PDT on lymphatic endothelial cells (LECs) have not been studied so far. The aim of this stud ...
Elsevier Science Bv2016
Show more
Related concepts (1)
Cell death
Cell death is the event of a biological cell ceasing to carry out its functions. This may be the result of the natural process of old cells dying and being replaced by new ones, as in programmed cell death, or may result from factors such as diseases, localized injury, or the death of the organism of which the cells are part. Apoptosis or Type I cell-death, and autophagy or Type II cell-death are both forms of programmed cell death, while necrosis is a non-physiological process that occurs as a result of infection or injury.