Summary
Sonoluminescence is the emission of light from imploding bubbles in a liquid when excited by sound. Sonoluminescence was first discovered in 1934 at the University of Cologne. It occurs when a sound wave of sufficient intensity induces a gaseous cavity within a liquid to collapse quickly, emitting a burst of light. The phenomenon can be observed in stable single-bubble sonoluminescence (SBSL) and multi-bubble sonoluminescence (MBSL). In 1960, Peter Jarman proposed that sonoluminescence is thermal in origin and might arise from microshocks within collapsing cavities. Later experiments revealed that the temperature inside the bubble during SBSL could reach up to 12,000 kelvins. The exact mechanism behind sonoluminescence remains unknown, with various hypotheses including hotspot, bremsstrahlung, and collision-induced radiation. Some researchers have even speculated that temperatures in sonoluminescing systems could reach millions of kelvins, potentially causing thermonuclear fusion however this idea has been met with skepticism by other researchers. The phenomenon has also been observed in nature, with the pistol shrimp being the first known instance of an animal producing light through sonoluminescence. The sonoluminescence effect was first discovered at the University of Cologne in 1934 as a result of work on sonar. Hermann Frenzel and H. Schultes put an ultrasound transducer in a tank of photographic developer fluid. They hoped to speed up the development process. Instead, they noticed tiny dots on the film after developing and realized that the bubbles in the fluid were emitting light with the ultrasound turned on. It was too difficult to analyze the effect in early experiments because of the complex environment of a large number of short-lived bubbles. This phenomenon is now referred to as multi-bubble sonoluminescence (MBSL). In 1960, Peter Jarman from Imperial College of London proposed the most reliable theory of sonoluminescence phenomenon.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)