Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around 20kHz to around 300GHz. This is roughly between the upper limit of audio frequencies and the lower limit of infrared frequencies. These are the frequencies at which energy from an oscillating current can radiate off a conductor into space as radio waves, so they are used in radio technology, among other uses. Different sources specify different upper and lower bounds for the frequency range.
Electric currents that oscillate at radio frequencies (RF currents) have special properties not shared by direct current or lower audio frequency alternating current, such as the 50 or 60 Hz current used in electrical power distribution.
Energy from RF currents in conductors can radiate into space as electromagnetic waves (radio waves). This is the basis of radio technology.
RF current does not penetrate deeply into electrical conductors but tends to flow along their surfaces; this is known as the skin effect.
RF currents applied to the body often do not cause the painful sensation and muscular contraction of electric shock that lower frequency currents produce. This is because the current changes direction too quickly to trigger depolarization of nerve membranes. However, this does not mean RF currents are harmless; they can cause internal injury as well as serious superficial burns called RF burns.
RF current can easily ionize air, creating a conductive path through it. This property is exploited by "high frequency" units used in electric arc welding, which use currents at higher frequencies than power distribution uses.
Another property is the ability to appear to flow through paths that contain insulating material, like the dielectric insulator of a capacitor. This is because capacitive reactance in a circuit decreases with increasing frequency.
In contrast, RF current can be blocked by a coil of wire, or even a single turn or bend in a wire.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
RF has changed our daily life in our ever connected wireless world (guess how many radios you have in your smartphone?). The goal of this course is to get familiar with RF design techniques in view of
Introduction à la physique des plasmas destinée à donner une vue globale des propriétés essentielles et uniques d'un plasma et à présenter les approches couramment utilisées pour modéliser son comport
In depth analysis of the operation principles and technology of advanced micro- and nanosystems. Familiarisation to their implementation into products and their applications.
Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1mm, which is shorter than the diameter of a grain of rice. At 30 Hz the corresponding wavelength is ~, which is longer than the radius of the Earth. Wavelength of a radio wave is inversely proportional to its frequency, because its velocity is constant.
Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.
The radio spectrum is the part of the electromagnetic spectrum with frequencies from 3 Hz to 3,000 GHz (3 THz). Electromagnetic waves in this frequency range, called radio waves, are widely used in modern technology, particularly in telecommunication. To prevent interference between different users, the generation and transmission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU).
This thesis investigates the magnetic properties of single atoms and molecules adsorbed on thin magnesium oxide decoupling layers, grown on a silver single crystal. To address these systems experimentally, we use a low temperature scanning tunneling micros ...
This course covers the principles and practices of radio astronomical observations, in particular with modern interferometers. Topics range from radio telescope technology to the measurement equation
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Experimental measurements of the turbulence amplitude utilizing a short pulse reflectometry method are presented. Two discharges with shaped plasma possessing opposite signs of triangularity are considered and a higher turbulence amplitude is found in the ...
Bristol2024
In this letter, we introduce an optimal transport framework for inferring power distributions over both spatial location and temporal frequency. Recently, it has been shown that optimal transport is a powerful tool for estimating spatial spectra that chang ...