In formal language theory, an alphabet, sometimes called a vocabulary, is a non-empty set of indivisible symbols/glyphs, typically thought of as representing letters, characters, digits, phonemes, or even words. Alphabets in this technical sense of a set are used in a diverse range of fields including logic, mathematics, computer science, and linguistics. An alphabet may have any cardinality ("size") and depending on its purpose maybe be finite (e.g., the alphabet of letters "a" through "z"), countable (e.g., ), or even uncountable (e.g., ). Strings, also known as "words" or "sentences", over an alphabet are defined as a sequence of the symbols from the alphabet set. For example, the alphabet of lowercase letters "a" through "z" can be used to form English words like "iceberg" while the alphabet of both upper and lower case letters can also be used to form proper names like "Wikipedia". A common alphabet is {0,1}, the binary alphabet, and a "00101111" is an example of a binary string. Infinite sequence of symbols may be considered as well (see Omega language). It is often necessary for practical purposes to restrict the symbols in an alphabet so that they are unambiguous when interpreted. For instance, if the two-member alphabet is {00,0}, a string written on paper as "000" is ambiguous because it is unclear if it is a sequence of three "0" symbols, a "00" followed by a "0", or a "0" followed by a "00". If L is a formal language, i.e. a (possibly infinite) set of finite-length strings, the alphabet of L is the set of all symbols that may occur in any string in L. For example, if L is the set of all variable identifiers in the programming language C, Ls alphabet is the set { a, b, c, ..., x, y, z, A, B, C, ..., X, Y, Z, 0, 1, 2, ..., 7, 8, 9, _ }. Given an alphabet , the set of all strings of length over the alphabet is indicated by . The set of all finite strings (regardless of their length) is indicated by the Kleene star operator as , and is also called the Kleene closure of .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Séances de cours associées (1)
Publications associées (17)
Concepts associés (16)
Grammaire formelle
Une grammaire formelle est un formalisme permettant de définir une syntaxe et donc un langage formel, c'est-à-dire un ensemble de mots admissibles sur un alphabet donné. La notion de grammaire formelle est particulièrement utilisée en programmation logique, compilation (analyse syntaxique), en théorie de la calculabilité et dans le traitement des langues naturelles (tout particulièrement en ce qui concerne leur morphologie et leur syntaxe).
Chaîne vide
In formal language theory, the empty string, or empty word, is the unique string of length zero. Formally, a string is a finite, ordered sequence of characters such as letters, digits or spaces. The empty string is the special case where the sequence has length zero, so there are no symbols in the string. There is only one empty string, because two strings are only different if they have different lengths or a different sequence of symbols. In formal treatments, the empty string is denoted with ε or sometimes Λ or λ.
Étoile de Kleene
L'étoile de Kleene, parfois appelée fermeture de Kleene ou encore fermeture itérative, est, en théorie des langages, un opérateur unaire utilisé pour décrire les langages formels. Le nom étoile vient de la notation employée, un astérisque, et Kleene de Stephen Cole Kleene qui l'a introduite. L'étoile de Kleene est l'un des trois opérateurs de base utilisés pour définir une expression rationnelle, avec la concaténation et l'union ensembliste.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.