Summary
In formal language theory, an alphabet, sometimes called a vocabulary, is a non-empty set of indivisible symbols/glyphs, typically thought of as representing letters, characters, digits, phonemes, or even words. Alphabets in this technical sense of a set are used in a diverse range of fields including logic, mathematics, computer science, and linguistics. An alphabet may have any cardinality ("size") and depending on its purpose maybe be finite (e.g., the alphabet of letters "a" through "z"), countable (e.g., ), or even uncountable (e.g., ). Strings, also known as "words" or "sentences", over an alphabet are defined as a sequence of the symbols from the alphabet set. For example, the alphabet of lowercase letters "a" through "z" can be used to form English words like "iceberg" while the alphabet of both upper and lower case letters can also be used to form proper names like "Wikipedia". A common alphabet is {0,1}, the binary alphabet, and a "00101111" is an example of a binary string. Infinite sequence of symbols may be considered as well (see Omega language). It is often necessary for practical purposes to restrict the symbols in an alphabet so that they are unambiguous when interpreted. For instance, if the two-member alphabet is {00,0}, a string written on paper as "000" is ambiguous because it is unclear if it is a sequence of three "0" symbols, a "00" followed by a "0", or a "0" followed by a "00". If L is a formal language, i.e. a (possibly infinite) set of finite-length strings, the alphabet of L is the set of all symbols that may occur in any string in L. For example, if L is the set of all variable identifiers in the programming language C, Ls alphabet is the set { a, b, c, ..., x, y, z, A, B, C, ..., X, Y, Z, 0, 1, 2, ..., 7, 8, 9, _ }. Given an alphabet , the set of all strings of length over the alphabet is indicated by . The set of all finite strings (regardless of their length) is indicated by the Kleene star operator as , and is also called the Kleene closure of .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Related publications (17)
Related concepts (16)
Formal grammar
In formal language theory, a grammar (when the context is not given, often called a formal grammar for clarity) describes how to form strings from a language's alphabet that are valid according to the language's syntax. A grammar does not describe the meaning of the strings or what can be done with them in whatever context—only their form. A formal grammar is defined as a set of production rules for such strings in a formal language. Formal language theory, the discipline that studies formal grammars and languages, is a branch of applied mathematics.
Empty string
In formal language theory, the empty string, or empty word, is the unique string of length zero. Formally, a string is a finite, ordered sequence of characters such as letters, digits or spaces. The empty string is the special case where the sequence has length zero, so there are no symbols in the string. There is only one empty string, because two strings are only different if they have different lengths or a different sequence of symbols. In formal treatments, the empty string is denoted with ε or sometimes Λ or λ.
Kleene star
In mathematical logic and computer science, the Kleene star (or Kleene operator or Kleene closure) is a unary operation, either on sets of strings or on sets of symbols or characters. In mathematics, it is more commonly known as the free monoid construction. The application of the Kleene star to a set is written as . It is widely used for regular expressions, which is the context in which it was introduced by Stephen Kleene to characterize certain automata, where it means "zero or more repetitions".
Show more