In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing. It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood. It plays an important role in exponential dispersion models and generalized linear models.
Deviance can be related to Kullback-Leibler divergence.
The unit deviance is a bivariate function that satisfies the following conditions:
The total deviance of a model with predictions of the observation is the sum of its unit deviances: .
The (total) deviance for a model M0 with estimates , based on a dataset y, may be constructed by its likelihood as:
Here denotes the fitted values of the parameters in the model M0, while denotes the fitted parameters for the saturated model: both sets of fitted values are implicitly functions of the observations y. Here, the saturated model is a model with a parameter for every observation so that the data are fitted exactly. This expression is simply 2 times the log-likelihood ratio of the full model compared to the reduced model. The deviance is used to compare two models – in particular in the case of generalized linear models (GLM) where it has a similar role to residual sum of squares from ANOVA in linear models (RSS).
Suppose in the framework of the GLM, we have two nested models, M1 and M2. In particular, suppose that M1 contains the parameters in M2, and k additional parameters. Then, under the null hypothesis that M2 is the true model, the difference between the deviances for the two models follows, based on Wilks' theorem, an approximate chi-squared distribution with k-degrees of freedom. This can be used for hypothesis testing on the deviance.
Some usage of the term "deviance" can be confusing. According to Collett:
"the quantity is sometimes referred to as a deviance. This is [...] inappropriate, since unlike the deviance used in the context of generalized linear modelling, does not measure deviation from a model that is a perfect fit to the data.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Akaike information criterion (AIC) is an estimator of prediction error and thereby relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. Thus, AIC provides a means for model selection. AIC is founded on information theory. When a statistical model is used to represent the process that generated the data, the representation will almost never be exact; so some information will be lost by using the model to represent the process.
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops