Summary
UV curing (ultraviolet curing) is the process by which ultraviolet light is used to initiate a photochemical reaction that generates a crosslinked network of polymers. UV curing is adaptable to printing, coating, decorating, stereolithography, and in the assembly of a variety of products and materials. In comparison to other technologies, curing with UV energy may be considered a low-temperature process, a high-speed process, and is a solventless process, as cure occurs via direct polymerization rather than by evaporation. Originally introduced in the 1960s, this technology has streamlined and increased automation in many industries in the manufacturing sector. UV curing is used in applications where there is a need for converting or curing inks, adhesives, and coatings. UV-cured adhesive has become a high speed replacement for two-part adhesives, eliminating the need for solvent removal, ratio mixing, and potential life concern. It can be used in the flexographic, offset, pad, and screen printing processes, where UV curing systems are used to polymerize images on screen-printed products, ranging from T-shirts to 3D and cylindrical parts. It is used in fine instrument finishing (guitars, violins, ukuleles, etc.), pool cue manufacturing and other wood craft industries. Printing with UV curable inks provides the ability to print on a very wide variety of substrates such as plastics, paper, canvas, glass, metal, foam boards, tile, films, and many other materials. Other industries that take advantage of UV curing include medicine, automobiles, cosmetics (for example artificial fingernails and gel nail polish), food, science, education, and art. UV curable inks have met the requirements of the publication sector on a variety of papers and boards. A primary advantage of curing with ultraviolet light is the speed at which a material can be processed. Speeding up the curing or drying step in a process can reduce flaws and errors by decreasing time that an ink or coating spends wet.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.