The Discovery Program is a series of Solar System exploration missions funded by the U.S. National Aeronautics and Space Administration (NASA) through its Planetary Missions Program Office. The cost of each mission is capped at a lower level than missions from NASA's New Frontiers or Flagship Programs. As a result, Discovery missions tend to be more focused on a specific scientific goal rather than serving a general purpose.
The Discovery Program was founded in 1990 to implement the policy of the then-NASA administrator Daniel S. Goldin of "faster, better, cheaper" planetary science missions. Existing NASA programs had specified mission targets and objectives in advance, then sought bidders to construct and operate them. In contrast, Discovery missions are solicited through a call for proposals on any science topic and assessed through peer review. Selected missions are led by a scientist called the principal investigator (PI) and may include contributions from industry, universities or government laboratories.
The Discovery Program also includes Missions of Opportunity, which fund U.S. participation in spacecraft operated by other space agencies, for example by contributing a single scientific instrument. It can also be used to re-purpose an existing NASA spacecraft for a new mission.
As of June 2021, the most recently selected Discovery missions were VERITAS and DAVINCI, the fifteenth and sixteenth missions in the program.
In 1989, NASA's Solar System Exploration Division began to define a new strategy for Solar System exploration up to the year 2000. This included a Small Mission Program Group that investigated missions that would be low cost and allow focused scientific questions to be addressed in shorter time than existing programs. The result was a request for rapid studies of potential missions and NASA committed funding in 1990. The new program was called "Discovery".
The panel assessed several concepts that could be implemented as low-cost programs, selecting NEAR Shoemaker which became the first launch in the Discovery Program on February 17, 1996.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Neptune is the eighth planet from the Sun and the farthest IAU-recognized planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, and slightly more massive than its near-twin Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. Being composed primarily of gases and liquids, it has no well-defined solid surface.
The New Frontiers program is a series of space exploration missions being conducted by NASA with the purpose of furthering the understanding of the Solar System. The program selects medium-class missions which can provide high science returns. NASA is encouraging both domestic and international scientists to submit mission proposals for the program. New Frontiers was built on the innovative approach used by the Discovery and Explorer Programs of principal investigator-led missions.
Planetary science (or more rarely, planetology) is the scientific study of planets (including Earth), celestial bodies (such as moons, asteroids, comets) and planetary systems (in particular those of the Solar System) and the processes of their formation. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history.
An innovative photogrammetric pipeline has been developed by INAF-Padova for the processing of the stereo images from the CaSSIS (Colour and Stereo Imaging System) (Thomas et al., 2014). CaSSIS is the multispectral stereo push frame camera on board ExoMars ...
Despite the key role of the Arctic in the global Earth system, year-round in-situ atmospheric composition observations within the Arctic are sparse and mostly rely on measurements at ground-based coastal stations. Measurements of a suite of in-situ trace g ...
Explores the lessons and advancements in space exploration, focusing on Skylab, Space Shuttle, and ISS.
,
Despite their irresistible success, deep learning algorithms still heavily rely on annotated data, and unsupervised settings pose many challenges, such as finding the right inductive bias in diverse scenarios. In this paper, we propose an object-centric mo ...