Summary
In polymer chemistry, an addition polymer is a polymer that forms by simple linking of monomers without the co-generation of other products. Addition polymerization differs from condensation polymerization, which does co-generate a product, usually water. Addition polymers can be formed by chain polymerization, when the polymer is formed by the sequential addition of monomer units to an active site in a chain reaction, or by polyaddition, when the polymer is formed by addition reactions between species of all degrees of polymerization. Addition polymers are formed by the addition of some simple monomer units repeatedly. Generally polymers are unsaturated compounds like alkenes, alkalines etc. The addition polymerization mainly takes place in free radical mechanism. The free radical mechanism of addition polymerization completed by three steps i.e. Initiation of free radical, Chain propagation, Termination of chain. Many common addition polymers are formed from unsaturated monomers (usually having a C=C double bond). The most prevalent addition polymers are polyolefins, i.e. polymers derived by the conversion of olefins (alkenes) to long-chain alkanes. The stoichiometry is simple: n RCH=CH2 → [RCH-CH2]n This conversion can be induced by a variety of catalysts including free radicals, acids, carbanions and metal complexes. Examples of such polyolefins are polyethenes, polypropylene, PVC, Teflon, Buna rubbers, polyacrylates, polystyrene, and PCTFE. When two or more types of monomers undergo addition polymerization, the resulting polymer is an addition copolymer. Saran wrap, formed from polymerization of vinyl chloride and vinylidene chloride, is an addition copolymer. Ring-opening polymerization is an additive process but tends to give condensation-like polymers but follows the stoichiometry of addition polymerization. For example, polyethylene glycol is formed by opening ethylene oxide rings: HOCH2CH2OH + n C2H4O → HO(CH2CH2O)n+1H Nylon 6 (developed to thwart the patent on nylon 6,6) is produced by addition polymerization, but chemically resembles typical polyamides.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.