Image compression is a type of data compression applied to s, to reduce their cost for storage or transmission. Algorithms may take advantage of visual perception and the statistical properties of image data to provide superior results compared with generic data compression methods which are used for other digital data.
Image compression may be lossy or lossless. Lossless compression is preferred for archival purposes and often for medical imaging, technical drawings, clip art, or comics. Lossy compression methods, especially when used at low bit rates, introduce compression artifacts. Lossy methods are especially suitable for natural images such as photographs in applications where minor (sometimes imperceptible) loss of fidelity is acceptable to achieve a substantial reduction in bit rate. Lossy compression that produces negligible differences may be called visually lossless.
Methods for lossy compression:
Transform coding – This is the most commonly used method.
Discrete Cosine Transform (DCT) – The most widely used form of lossy compression. It is a type of Fourier-related transform, and was originally developed by Nasir Ahmed, T. Natarajan and K. R. Rao in 1974. The DCT is sometimes referred to as "DCT-II" in the context of a family of discrete cosine transforms (see discrete cosine transform). It is generally the most efficient form of image compression.
DCT is used in JPEG, the most popular lossy format, and the more recent HEIF.
The more recently developed wavelet transform is also used extensively, followed by and entropy coding.
Color quantization - Reducing the color space to a few "representative" colors in the image. The selected colors are specified in the color palette in the header of the compressed image. Each pixel just references the index of a color in the color palette. This method can be combined with dithering to avoid posterization.
Whole-image palette, typically 256 colors, used in GIF and PNG file formats.
block palette, typically 2 or 4 colors for each block of 4x4 pixels, used in BTC, CCC, S2TC, and S3TC.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping using Jupyter notebooks. Application to real-world examples in
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
This course covers fundamental notions in image and video processing, as well as covers most popular tools used, such as edge detection, motion estimation, segmentation, and compression. It is compose
A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of cosine functions oscillating at different frequencies. The DCT, first proposed by Nasir Ahmed in 1972, is a widely used transformation technique in signal processing and data compression. It is used in most digital media, including (such as JPEG and HEIF), digital video (such as MPEG and H.26x), digital audio (such as Dolby Digital, MP3 and AAC), digital television (such as SDTV, HDTV and VOD), digital radio (such as AAC+ and DAB+), and speech coding (such as AAC-LD, Siren and Opus).
JPEG 2000 (JP2) is an standard and coding system. It was developed from 1997 to 2000 by a Joint Photographic Experts Group committee chaired by Touradj Ebrahimi (later the JPEG president), with the intention of superseding their original JPEG standard (created in 1992), which is based on a discrete cosine transform (DCT), with a newly designed, wavelet-based method. The standardized is .jp2 for ISO/IEC 15444-1 conforming files and .jpx for the extended part-2 specifications, published as ISO/IEC 15444-2.
In information technology, lossy compression or irreversible compression is the class of data compression methods that uses inexact approximations and partial data discarding to represent the content. These techniques are used to reduce data size for storing, handling, and transmitting content. The different versions of the photo of the cat on this page show how higher degrees of approximation create coarser images as more details are removed. This is opposed to lossless data compression (reversible data compression) which does not degrade the data.
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
The recent rise in interest in point clouds as an imaging modality has motivated standardization groups such as JPEG and MPEG to launch activities aiming at developing compression standards for point clouds. Lossy compression usually introduces visual arti ...
Springer2024
,
Point clouds allow for the representation of 3D multimedia content as a set of disconnected points in space. Their inher- ent irregular geometric nature poses a challenge to efficient compression, a critical operation for both storage and trans- mission. T ...
Recent advances in image compression have made it both possible and desirable for image quality to approach the visually lossless range. However, the most commonly used subjective visual quality assessment protocols, e.g. those reported in ITU-T Rec. BT.50 ...