In computer science a for-loop or for loop is a control flow statement for specifying iteration. Specifically, a for loop functions by running a section of code repeatedly until a certain condition has been satisfied.
For-loops have two parts: a header and a body. The header defines the iteration and the body is the code that is executed once per iteration. The header often declares an explicit loop counter or loop variable. This allows the body to know which iteration is being executed. For-loops are typically used when the number of iterations is known before entering the loop. For-loops can be thought of as shorthands for while-loops which increment and test a loop variable.
Various keywords are used to indicate the usage of a for loop: descendants of ALGOL use "", while descendants of Fortran use "". There are other possibilities, for example COBOL which uses .
The name for-loop comes from the word for. For is used as the keyword in many programming languages to introduce a for-loop. The term in English dates to ALGOL 58 and was popularized in ALGOL 60. It is the direct translation of the earlier German für and was used in Superplan (1949–1951) by Heinz Rutishauser. Rutishauser was involved in defining ALGOL 58 and ALGOL 60. The loop body is executed "for" the given values of the loop variable. This is more explicit in ALGOL versions of the for statement where a list of possible values and increments can be specified.
In Fortran and PL/I, the keyword is used for the same thing and it is called a do-loop; this is different from a do-while loop.
A for-loop statement is available in most imperative programming languages. Even ignoring minor differences in syntax there are many differences in how these statements work and the level of expressiveness they support. Generally, for-loops fall into one of the following categories:
The for-loop of languages like ALGOL, Simula, BASIC, Pascal, Modula, Oberon, Ada, Matlab, Ocaml, F#, and so on, requires a control variable with start- and end-values, which looks something like this:
for i = first to last do statement
(* or just *)
for i = first.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Goto (goto, GOTO, GO TO, GoTo, or other case combinations, depending on the programming language) is a statement found in many computer programming languages. It performs a one-way transfer of control to another line of code; in contrast a function call normally returns control. The jumped-to locations are usually identified using labels, though some languages use line numbers. At the machine code level, a goto is a form of branch or jump statement, in some cases combined with a stack adjustment.
In most computer programming languages, a while loop is a control flow statement that allows code to be executed repeatedly based on a given Boolean condition. The while loop can be thought of as a repeating if statement. The while construct consists of a block of code and a condition/expression. The condition/expression is evaluated, and if the condition/expression is true, the code within all of their following in the block is executed. This repeats until the condition/expression becomes false.
In computer science, recursion is a method of solving a computational problem where the solution depends on solutions to smaller instances of the same problem. Recursion solves such recursive problems by using functions that call themselves from within their own code. The approach can be applied to many types of problems, and recursion is one of the central ideas of computer science. The power of recursion evidently lies in the possibility of defining an infinite set of objects by a finite statement.
Ce cours initie à la programmation en utilisant le langage Java. Il ne présuppose pas de connaissance préalable. Les aspects plus avancés (programmation orientée objet) sont donnés dans un cours suiva
Ce cours donne les bases théoriques et pratiques nécessaires à une bonne compréhension et utilisation des microcontrôleurs. De nombreux exemples seront abordés. Des exercices seront proposés, compatib
This seminar teaches the participants to use advanced Python concepts for writing easier to read, more flexible and faster code.
It teaches concepts in a hands-on and tangible fashion, providing examp
L'objectif de ce cours est d'initier les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de
l'informatique et des communications et de développer une première compétence
The "Introduction to Applied Data Science" (I2ADS) course is aimed at students of all levels to train them in the core computer science software stack and techniques forming the pillars of open & repr
We construct a measure on the thick points of a Brownian loop soup in a bounded domain DD of the plane with given intensity theta>0θ>0, which is formally obtained by exponentiating the square root of its occupation field. The measure is construct ...
Formally verifying the correctness of software is necessary to merit the trust people put in software systems. Currently, formal verification requires human effort to prove that a piece of code matches its specification and code changes to improve verifiab ...
This contribution presents an isotropic magnetic field probe with shaped frequency response in the band 100 kHz - 400 MHz to ponder the aggregate response according to the ICNIRP 2020 guidelines. The basic sensor is a printed loop which is modelled as a Th ...