In computer programming, a runtime library is a set of low-level routines used by a compiler to invoke some of the behaviors of a runtime environment, by inserting calls to the runtime library into compiled executable binary. The runtime environment implements the execution model, built-in functions, and other fundamental behaviors of a programming language. During execution (run time) of that computer program, execution of those calls to the runtime library cause communication between the executable binary and the runtime environment. A runtime library often includes built-in functions for memory management or exception handling. Therefore, a runtime library is always specific to the platform and compiler.
The runtime library may implement a portion of the runtime environment's behavior, but if one reads the code of the calls available, they are typically only thin wrappers that simply package information, and send it to the runtime environment or operating system. However, sometimes the term runtime library is meant to include the code of the runtime environment itself, even though much of that code cannot be directly reached via a library call.
For example, some language features that can be performed only (or are more efficient or accurate) at runtime are implemented in the runtime environment and may be invoked via the runtime library API, e.g. some logic errors, array bounds checking, dynamic type checking, exception handling, and possibly debugging functionality. For this reason, some programming bugs are not discovered until the program is tested in a "live" environment with real data, despite sophisticated compile-time checking and testing performed during development.
As another example, a runtime library may contain code of built-in low-level operations too complicated for their inlining during compilation, such as implementations of arithmetic operations not directly supported by the targeted CPU, or various miscellaneous compiler-specific operations and directives.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn the concepts, tools and API's that are needed to debug, test, optimize and parallelize a scientific application on a cluster from an existing code or from scratch. Both OpenMP (shared memory) an
In computer programming, a runtime system or runtime environment is a sub-system that exists both in the computer where a program is created, as well as in the computers where the program is intended to be run. The name comes from the compile time and runtime division from compiled languages, which similarly distinguishes the computer processes involved in the creation of a program (compilation) and its execution in the target machine (the run time). Most programming languages have some form of runtime system that provides an environment in which programs run.
In computing, executable code, an executable file, or an executable program, sometimes simply referred to as an executable or binary, causes a computer "to perform indicated tasks according to encoded instructions", as opposed to a data file that must be interpreted (parsed) by a program to be meaningful. The exact interpretation depends upon the use. "Instructions" is traditionally taken to mean machine code instructions for a physical CPU. In some contexts, a file containing scripting instructions (such as bytecode) may also be considered executable.
Execution in computer and software engineering is the process by which a computer or virtual machine reads and acts on the instructions of a computer program. Each instruction of a program is a description of a particular action which must be carried out, in order for a specific problem to be solved. Execution involves repeatedly following a 'fetch–decode–execute' cycle for each instruction done by control unit. As the executing machine follows the instructions, specific effects are produced in accordance with the semantics of those instructions.
This thesis demonstrates that it is feasible for systems code to expose a latency interface that describes its latency and related side effects for all inputs, just like the code's semantic interface describes its functionality and related side effects.Sem ...
Local gyrokinetic simulations use a field-aligned domain that twists due to the magnetic shear of the background magnetic equilibrium. However, if the magnetic shear is strong and/or the domain is long, the twist can become so extreme that it fails to prop ...
Whole Genome Sequencing is a process in the field of bioinformatics that transforms biological samples of DNA into an electronic dataset of genetic bases. The process consists of two sequential components. First, the laboratory process of sequencing transf ...