The solute carrier family 18 member 2 (SLC18A2) also known as vesicular monoamine transporter 2 (VMAT2) is a protein that in humans is encoded by the SLC18A2 gene. SLC18A2 is an integral membrane protein that transports monoamines—particularly neurotransmitters such as dopamine, norepinephrine, serotonin, and histamine—from cellular cytosol into synaptic vesicles. In nigrostriatal pathway and mesolimbic pathway dopamine-releasing neurons, SLC18A2 function is also necessary for the vesicular release of the neurotransmitter GABA.
SLC18A2 is believed to possess at least two distinct binding sites, which are characterized by tetrabenazine (TBZ) and reserpine binding to the transporter. Amphetamine (TBZ site) and methamphetamine (reserpine site) bind at distinct sites on SLC18A2 to inhibit its function. SLC18A2 inhibitors like tetrabenazine and reserpine reduce the concentration of monoamine neurotransmitters in the synaptic cleft by inhibiting uptake through SLC18A2; the inhibition of SLC18A2 uptake by these drugs prevents the storage of neurotransmitters in synaptic vesicles and reduces the quantity of neurotransmitters that are released through exocytosis. Although many substituted amphetamines induce the release of neurotransmitters from vesicles through SLC18A2 while inhibiting uptake through SLC18A2, they may facilitate the release of monoamine neurotransmitters into the synaptic cleft by simultaneously reversing the direction of transport through the primary plasma membrane transport proteins for monoamines (i.e., the dopamine transporter, norepinephrine transporter, and serotonin transporter) in monoamine neurons. Other SLC18A2 inhibitors such as GZ-793A inhibit the reinforcing effects of methamphetamine, but without producing stimulant or reinforcing effects themselves.
Researchers have found that inhibiting the dopamine transporter (but not SLC18A2) will block the effects of amphetamine and cocaine; while, in another experiment, observing that disabling SLC18A2 (but not the dopamine transporter) prevents any notable action in test animals after amphetamine administration yet not cocaine administration.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Substituted amphetamines are a class of compounds based upon the amphetamine structure; it includes all derivative compounds which are formed by replacing, or substituting, one or more hydrogen atoms in the amphetamine core structure with substituents. The compounds in this class span a variety of pharmacological subclasses, including stimulants, empathogens, and hallucinogens, among others.
Lisdexamfetamine, most commonly sold under the brand name Vyvanse (in the United States) and Elvanse (in most European countries) among others, is a stimulant medication that is used to treat attention deficit hyperactivity disorder (ADHD) in children and adults, and for moderate-to-severe binge eating disorder in adults. Lisdexamfetamine is taken by mouth. Its effects generally begin within two hours and last for up to 14 hours. In the United Kingdom, it is usually less preferred than methylphenidate for the treatment of children.
Methamphetamine (contracted from N-methylamphetamine) is a potent central nervous system (CNS) stimulant that is mainly used as a recreational drug and less commonly as a second-line treatment for attention deficit hyperactivity disorder and obesity. Methamphetamine was discovered in 1893 and exists as two enantiomers: levo-methamphetamine and dextro-methamphetamine. Methamphetamine properly refers to a specific chemical substance, the racemic free base, which is an equal mixture of levomethamphetamine and dextromethamphetamine in their pure amine forms, but the hydrochloride salt, commonly called crystal meth, is widely used.
There is compelling evidence that glutamate can act as a cotransmitter in the mammalian brain. Interestingly, the third vesicular glutamate transporter (VGLUT3) is primarily found in neurons that were anticipated to be nonglutamatergic. Whereas the functio ...
The G2019S mutation in leucine rich-repeat kinase 2 (LRRK2) is a major cause of familial Parkinson's disease. We previously reported that G2019S knock-in mice manifest dopamine transporter dysfunction and phosphoSerine129 alpha-synuclein (pSer129 alpha-syn ...
The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell a ...