In computer networking, a routing table, or routing information base (RIB), is a data table stored in a router or a network host that lists the routes to particular network destinations, and in some cases, metrics (distances) associated with those routes. The routing table contains information about the topology of the network immediately around it.
The construction of routing tables is the primary goal of routing protocols. Static routes are entries that are fixed, rather than resulting from routing protocols and network topology discovery procedures.
A routing table is analogous to a distribution map in package delivery. Whenever a node needs to send data to another node on a network, it must first know where to send it. If the node cannot directly connect to the destination node, it has to send it via other nodes along a route to the destination node. Each node needs to keep track of which way to deliver various packages of data, and for this it uses a routing table. A routing table is a database that keeps track of paths, like a map, and uses these to determine which way to forward traffic. A routing table is a data file in RAM that is used to store route information about directly connected and remote networks. Nodes can also share the contents of their routing table with other nodes.
The primary function of a router is to forward a packet toward its destination network, which is the destination IP address of the packet. To do this, a router needs to search the routing information stored in its routing table. The routing table contains network/next hop associations. These associations tell a router that a particular destination can be optimally reached by sending the packet to a specific router that represents the next hop on the way to the final destination. The next hop association can also be the outgoing or exit interface to the final destination.
With hop-by-hop routing, each routing table lists, for all reachable destinations, the address of the next device along the path to that destination: the next hop.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course provides an introduction to computer networks. It describes the principles that underly modern network operation and illustrates them using the Internet as an example.
A decentralized system is one that works when no single party is in charge or fully trusted. This course teaches decentralized systems principles while guiding students through the engineering of thei
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
The Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support. RIP implements the split horizon, route poisoning, and holddown mechanisms to prevent incorrect routing information from being propagated.
Packet forwarding is the relaying of packets from one network segment to another by nodes in a computer network. The network layer in the OSI model is responsible for packet forwarding. The simplest forwarding modelunicastinginvolves a packet being relayed from link to link along a chain leading from the packet's source to its destination. However, other forwarding strategies are commonly used. Broadcasting requires a packet to be duplicated and copies sent on multiple links with the goal of delivering a copy to every device on the network.
Explores the Internet Protocol (IP), BFS algorithm, routing tables, and IPv4 addresses.
, , , ,
The virus inactivation efficacy of disinfectants is typically assessed by infectivity assay utilizing a single type of host cell. Enteroviruses infect multiple host cells via different entry routes, and each entry route may be impaired differently by a giv ...
2023
One of the main global goals is the reduction of the energy consumption and the most appropriate way for achieving this aim is to target one of most critical sectors, the residential. The selected technology for this work is the district energy network, wh ...
2022
, ,
We identified that in modern commercial FPGAs, routing signals from the general interconnect to the configurable logic blocks (CLBs) through a very sparse input interconnect block (IIB) represents a significant runtime bottleneck. This is despite academic ...