Summary
In cryptography, a timing attack is a side-channel attack in which the attacker attempts to compromise a cryptosystem by analyzing the time taken to execute cryptographic algorithms. Every logical operation in a computer takes time to execute, and the time can differ based on the input; with precise measurements of the time for each operation, an attacker can work backwards to the input. Finding secrets through timing information may be significantly easier than using cryptanalysis of known plaintext, ciphertext pairs. Sometimes timing information is combined with cryptanalysis to increase the rate of information leakage. Information can leak from a system through measurement of the time it takes to respond to certain queries. How much this information can help an attacker depends on many variables: cryptographic system design, the CPU running the system, the algorithms used, assorted implementation details, timing attack countermeasures, the accuracy of the timing measurements, etc. Timing attacks can be applied to any algorithm that has data-dependent timing variation. Removing timing-dependencies is difficult in some algorithms that use low-level operations that frequently exhibit varied execution time. Timing attacks are often overlooked in the design phase because they are so dependent on the implementation and can be introduced unintentionally with compiler optimizations. Avoidance of timing attacks involves design of constant-time functions and careful testing of the final executable code. Many cryptographic algorithms can be implemented (or masked by a proxy) in a way that reduces or eliminates data-dependent timing information, a constant-time algorithm. Consider an implementation in which every call to a subroutine always returns in exactly x seconds, where x is the maximum time it ever takes to execute that routine on every possible authorized input. In such an implementation, the timing of the algorithm is less likely to leak information about the data supplied to that invocation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.