Stamping (also known as pressing) is the process of placing flat sheet metal in either blank or coil form into a stamping press where a tool and die surface forms the metal into a net shape. Stamping includes a variety of sheet-metal forming manufacturing processes, such as punching using a machine press or stamping press, blanking, embossing, bending, flanging, and coining. This could be a single stage operation where every stroke of the press produces the desired form on the sheet metal part, or could occur through a series of stages. The process is usually carried out on sheet metal, but can also be used on other materials, such as polystyrene. Progressive dies are commonly fed from a coil of steel, coil reel for unwinding of coil to a straightener to level the coil and then into a feeder which advances the material into the press and die at a predetermined feed length. Depending on part complexity, the number of stations in the die can be determined.
Stamping is usually done on cold metal sheet. See Forging for hot metal forming operations.
It is believed that the first coins were struck by the Lydians in what is modern-day Turkey in the seventh century B.C. Until 1550, the hammering method of coins remained the primary method of coin-making. Marx Schwab in Germany developed a new process for stamping that involved as many as 12 men turning a large wheel to press metal into coins. In the 1880s, the stamping process was further innovated.
Stamped parts were used for mass-produced bicycles in the 1880s. Stamping replaced die forging and machining, resulting in greatly reduced cost. Although not as strong as die forged parts, they were of good enough quality.
Stamped bicycle parts were being imported from Germany to the United States in 1890. U.S. companies then started to have stamping machines custom built by U.S. machine tool makers. Through research and development, Western Wheel was able to stamp most bicycle parts.
Several automobile manufacturers adopted stamping of parts.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In metalworking, forming is the fashioning of metal parts and objects through mechanical deformation; the workpiece is reshaped without adding or removing material, and its mass remains unchanged. Forming operates on the materials science principle of plastic deformation, where the physical shape of a material is permanently deformed. Metal forming tends to have more uniform characteristics across its subprocesses than its contemporary processes, cutting and joining.
Bending is a manufacturing process that produces a V-shape, U-shape, or channel shape along a straight axis in ductile materials, most commonly sheet metal. Commonly used equipment include box and pan brakes, brake presses, and other specialized machine presses. Typical products that are made like this are boxes such as electrical enclosures and rectangular ductwork. In press brake forming, a work piece is positioned over the die block and the die block presses the sheet to form a shape.
Sheet metal is metal formed into thin, flat pieces, usually by an industrial process. Sheet metal is one of the fundamental forms used in metalworking, and it can be cut and bent into a variety of shapes. Thicknesses can vary significantly; extremely thin sheets are considered foil or leaf, and pieces thicker than 6 mm (0.25 in) are considered plate, such as plate steel, a class of structural steel. Sheet metal is available in flat pieces or coiled strips. The coils are formed by running a continuous sheet of metal through a roll slitter.
Application des principales catégories de procédés de production.Modèles physiques élémentaires décrivant le comportement des principaux procédés de production.Compréhension de base des aspects éc
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
We investigate numerically the effect of a finite metal film thickness on the propagation characteristics of the channel plasmon polariton (CPP) and wedge plasmon polariton (WPP) modes, both in a symmetric and asymmetric environment. We observe that decrea ...
This paper focuses on the importance of taking into account scattering of material parameters (zinc in this example) to perform sheet metal forming simulations. The approach described in this paper is efficiently pragmatic to consider as inputs the materia ...
The skin is not only the largest human organ, capable of accomplishing distributed and multimodal sensing functions. Replicating the versatility of skin artificially is a significant challenge, not only in terms of signal processing but also in mechanics. ...