A diving helmet is a rigid head enclosure with a breathing gas supply used in underwater diving. They are worn mainly by professional divers engaged in surface-supplied diving, though some models can be used with scuba equipment. The upper part of the helmet, known colloquially as the hat or bonnet, may be sealed directly to the diver using a neck dam, connected to a diving suit by a lower part, known as a breastplate, or corselet, depending on regional language preferences. or simply rest on the diver's shoulders, with an open bottom, for shallow water use.
The helmet isolates the diver's head from the water, allows the diver to see clearly underwater, provides the diver with breathing gas, protects the diver's head when doing heavy or dangerous work, and usually provides voice communications with the surface (and possibly other divers). If a helmeted diver becomes unconscious but is still breathing, most helmets will remain in place and continue to deliver breathing gas until the diver can be rescued. In contrast, the scuba regulator typically used by recreational divers must be held in the mouth by bite grips, and it can fall out of an unconscious diver's mouth and result in drowning.
Before the invention of the demand regulator, all diving helmets used a free-flow design. Gas was delivered at an approximately constant rate, independent of the diver's breathing, and flowed out through an exhaust valve against a slight over-pressure. Most modern helmets incorporate a demand valve so the helmet only delivers breathing gas when the diver inhales. Free-flow helmets use much larger quantities of gas than demand helmets, which can cause logistical difficulties and is very expensive when special breathing gases (such as heliox) are used. They also produce a constant noise inside the helmet, which can cause communication difficulties. Free-flow helmets are still preferred for some applications of hazardous materials diving, because their positive-pressure nature can prevent the ingress of hazardous material in case the integrity of the suit or helmet is compromised.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Professional diving is underwater diving where the divers are paid for their work. The procedures are often regulated by legislation and codes of practice as it is an inherently hazardous occupation and the diver works as a member of a team. Due to the dangerous nature of some professional diving operations, specialized equipment such as an on-site hyperbaric chamber and diver-to-surface communication system is often required by law, and the mode of diving for some applications may be regulated.
Underwater diving, as a human activity, is the practice of descending below the water's surface to interact with the environment. It is also often referred to as diving, an ambiguous term with several possible meanings, depending on context. Immersion in water and exposure to high ambient pressure have physiological effects that limit the depths and duration possible in ambient pressure diving.
Recreational diving or sport diving is diving for the purpose of leisure and enjoyment, usually when using scuba equipment. The term "recreational diving" may also be used in contradistinction to "technical diving", a more demanding aspect of recreational diving which requires more training and experience to develop the competence to reliably manage more complex equipment in the more hazardous conditions associated with the disciplines.
Covers spontaneous brain network activity, neural simulation, and validation, emphasizing the importance of in-vitro and in-vivo conditions for accurate network modeling.
Plasma filaments generated by turbulence in the scrape-off layer are sometimes observed in experi- ments and simulations to disconnect from the target plate in the vicinity of the X-point, resulting in a “quiescent zone” with reduced fluctuations, possibly ...
System (2) for CO2 capture from a combustion engine (1) comprising an exhaust gas flow circuit (6) having an inlet end fluidly connected to an exhaust of the combustion engine, a heat exchanger circuit (12), a primary exhaust gas heat exchanger (H1) for tr ...
The Future Circular Collider for hadrons (FCC-hh) is the proposed high-energy frontier particle collider, which is expected to enable proton-proton collisions at a center-of-mass energy of 100 TeV. The specifications for the FCC-hh injection kicker system ...