In probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability. The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable.
If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. The properties of a conditional distribution, such as the moments, are often referred to by corresponding names such as the conditional mean and conditional variance.
More generally, one can refer to the conditional distribution of a subset of a set of more than two variables; this conditional distribution is contingent on the values of all the remaining variables, and if more than one variable is included in the subset then this conditional distribution is the conditional joint distribution of the included variables.
For discrete random variables, the conditional probability mass function of given can be written according to its definition as:
Due to the occurrence of in the denominator, this is defined only for non-zero (hence strictly positive)
The relation with the probability distribution of given is:
Consider the roll of a fair and let if the number is even (i.e., 2, 4, or 6) and otherwise. Furthermore, let if the number is prime (i.e., 2, 3, or 5) and otherwise.
Then the unconditional probability that is 3/6 = 1/2 (since there are six possible rolls of the dice, of which three are even), whereas the probability that conditional on is 1/3 (since there are three possible prime number rolls—2, 3, and 5—of which one is even).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours est une introduction à la théorie des probabilités. Le but sera d'introduire le formalisme moderne (basé sur la notion de mesure) et de lier celui-ci à l'aspect "intuitif" des probabilités.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) has already occurred. This particular method relies on event B occurring with some sort of relationship with another event A. In this event, the event B can be analyzed by a conditional probability with respect to A. If the event of interest is A and the event B is known or assumed to have occurred, "the conditional probability of A given B", or "the probability of A under the condition B", is usually written as P(AB) or occasionally P_B(A).
Given two random variables that are defined on the same probability space, the joint probability distribution is the corresponding probability distribution on all possible pairs of outputs. The joint distribution can just as well be considered for any given number of random variables. The joint distribution encodes the marginal distributions, i.e. the distributions of each of the individual random variables. It also encodes the conditional probability distributions, which deal with how the outputs of one random variable are distributed when given information on the outputs of the other random variable(s).
In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value – the value it would take "on average" over an arbitrarily large number of occurrences – given that a certain set of "conditions" is known to occur. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values.
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
We give an extension of Le's stochastic sewing lemma. The stochastic sewing lemma proves convergence in Lm of Riemann type sums ∑[s,t]∈πAs,t for an adapted two-parameter stochastic process A, under certain conditions on the moments o ...
Cambridge Univ Press2024
,
We consider the problem of defining and fitting models of autoregressive time series of probability distributions on a compact interval of Double-struck capital R. An order-1 autoregressive model in this context is to be understood as a Markov chain, where ...