In biochemistry, immunostaining is any use of an antibody-based method to detect a specific protein in a sample. The term "immunostaining" was originally used to refer to the immunohistochemical staining of tissue sections, as first described by Albert Coons in 1941. However, immunostaining now encompasses a broad range of techniques used in histology, cell biology, and molecular biology that use antibody-based staining methods.
Immunohistochemistry
Immunohistochemistry or IHC staining of tissue sections (or immunocytochemistry, which is the staining of cells), is perhaps the most commonly applied immunostaining technique. While the first cases of IHC staining used fluorescent dyes (see immunofluorescence), other non-fluorescent methods using enzymes such as peroxidase (see immunoperoxidase staining) and alkaline phosphatase are now used. These enzymes are capable of catalysing reactions that give a coloured product that is easily detectable by light microscopy. Alternatively, radioactive elements can be used as labels, and the immunoreaction can be visualized by autoradiography.
Tissue preparation or fixation is essential for the preservation of cell morphology and tissue architecture. Inappropriate or prolonged fixation may significantly diminish the antibody binding capability. Many antigens can be successfully demonstrated in formalin-fixed paraffin-embedded tissue sections. However, some antigens will not survive even moderate amounts of aldehyde fixation. Under these conditions, tissues should be rapidly fresh frozen in liquid nitrogen and cut with a cryostat. The disadvantages of frozen sections include poor morphology, poor resolution at higher magnifications, difficulty in cutting over paraffin sections, and the need for frozen storage. Alternatively, vibratome sections do not require the tissue to be processed through organic solvents or high heat, which can destroy the antigenicity, or disrupted by freeze thawing.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Immunohistochemistry (IHC) is the most common application of immunostaining. It involves the process of selectively identifying antigens (proteins) in cells of a tissue section by exploiting the principle of antibodies binding specifically to antigens in biological tissues. IHC takes its name from the roots "immuno", in reference to antibodies used in the procedure, and "histo", meaning tissue (compare to immunocytochemistry). Albert Coons conceptualized and first implemented the procedure in 1941.
Immunocytochemistry (ICC) is a common laboratory technique that is used to anatomically visualize the localization of a specific protein or antigen in cells by use of a specific primary antibody that binds to it. The primary antibody allows visualization of the protein under a fluorescence microscope when it is bound by a secondary antibody that has a conjugated fluorophore. ICC allows researchers to evaluate whether or not cells in a particular sample express the antigen in question.
The western blot (sometimes called the protein immunoblot), or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detecting the proteins, this technique is also utilized to visualize, distinguish, and quantify the different proteins in a complicated protein combination.
Borrowing some quotes from Harper Lee's novel "To Kill A Mockingbird" to help frame our manuscript, we discuss methods to profile local proteomes. We initially focus on chemical biology regimens that function in live organisms and use reactive biotin speci ...
In contrast to conventional microfluidics, where liquids are typically manipulated within closed channels, open-space microfluidics has emerged as a new class of techniques that are well suited for ver-satile interaction with biological substrates. In part ...
The usage of microfluidics for automated and fast immunoassays has gained a lot of interest in the last decades. This integration comes with certain challenges, like the reconciliation of laminar flow patterns of micro-scale systems with diffusion-limited ...