Summary
Memory protection is a way to control memory access rights on a computer, and is a part of most modern instruction set architectures and operating systems. The main purpose of memory protection is to prevent a process from accessing memory that has not been allocated to it. This prevents a bug or malware within a process from affecting other processes, or the operating system itself. Protection may encompass all accesses to a specified area of memory, write accesses, or attempts to execute the contents of the area. An attempt to access unauthorized memory results in a hardware fault, e.g., a segmentation fault, storage violation exception, generally causing abnormal termination of the offending process. Memory protection for computer security includes additional techniques such as address space layout randomization and executable space protection. Memory segmentation Segmentation refers to dividing a computer's memory into segments. A reference to a memory location includes a value that identifies a segment and an offset within that segment. A segment descriptor may limit access rights, e.g., read only, only from certain rings. The x86 architecture has multiple segmentation features, which are helpful for using protected memory on this architecture. On the x86 architecture, the Global Descriptor Table and Local Descriptor Tables can be used to reference segments in the computer's memory. Pointers to memory segments on x86 processors can also be stored in the processor's segment registers. Initially x86 processors had 4 segment registers, CS (code segment), SS (stack segment), DS (data segment) and ES (extra segment); later another two segment registers were added – FS and GS. Paged virtual memory In paging the memory address space or segment is divided into equal-sized blocks called pages. Using virtual memory hardware, each page can reside in any location at a suitable boundary of the computer's physical memory, or be flagged as being protected.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.