Solar radius is a unit of distance used to express the size of stars in astronomy relative to the Sun. The solar radius is usually defined as the radius to the layer in the Sun's photosphere where the optical depth equals 2/3:
is approximately 10 times the average radius of Jupiter, 109 times the radius of the Earth, and 1/215th of an astronomical unit, the approximate distance between Earth and the Sun. The solar radius to either pole and that to the equator differ slightly due to the Sun's rotation, which induces an oblateness in the order of 10 parts per million.
The uncrewed SOHO spacecraft was used to measure the radius of the Sun by timing transits of Mercury across the surface during 2003 and 2006. The result was a measured radius of .
Haberreiter, Schmutz & Kosovichev (2008) determined the radius corresponding to the solar photosphere to be . This new value is consistent with helioseismic estimates; the same study showed that previous estimates using inflection point methods had been overestimated by approximately .
In 2015, the International Astronomical Union passed Resolution B3, which defined a set of nominal conversion constants for stellar and planetary astronomy. Resolution B3 defined the nominal solar radius (symbol ) to be equal to exactly 695700km. The nominal value, which is the rounded value, within the uncertainty, given by Haberreiter, Schmutz & Kosovichev (2008), was adopted to help astronomers avoid confusion when quoting stellar radii in units of the Sun's radius, even when future observations will likely refine the Sun's actual photospheric radius (which is currently only known to about an accuracy of ±100km).
Solar radii as a unit are common when describing spacecraft moving close to the sun.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature when the body's emissivity curve (as a function of wavelength) is not known. When the star's or planet's net emissivity in the relevant wavelength band is less than unity (less than that of a black body), the actual temperature of the body will be higher than the effective temperature.
The light-second is a unit of length useful in astronomy, telecommunications and relativistic physics. It is defined as the distance that light travels in free space in one second, and is equal to exactly 299 792 458 metres (approximately 983 571 055 ft). Just as the second forms the basis for other units of time, the light-second can form the basis for other units of length, ranging from the light-nanosecond (299.8mm or just under one international foot) to the light-minute, light-hour and light-day, which are sometimes used in popular science publications.
The solar luminosity () is a unit of radiant flux (power emitted in the form of photons) conventionally used by astronomers to measure the luminosity of stars, galaxies and other celestial objects in terms of the output of the Sun. One nominal solar luminosity is defined by the International Astronomical Union to be 3.828e26W. The Sun is a weakly variable star, and its actual luminosity therefore fluctuates. The major fluctuation is the eleven-year solar cycle (sunspot cycle) that causes a quasi-periodic variation of about ±0.
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
The largest source of systematic errors in the time-delay cosmography method likely arises from the lens model mass distribution, where an inaccurate choice of model could in principle bias the value of H-0. A Bayesian hierarchical framework has been propo ...
EDP SCIENCES S A2022
,
We present JWST/NIRSpec prism spectroscopy of seven galaxies selected from Cosmic Evolution Early Release Science (CEERS) survey NIRCam imaging with photometric redshifts z(phot) > 8. We measure emission line redshifts of z = 7.65 and 8.64 for two galaxies ...
The central dark-matter fraction of galaxies is sensitive to feedback processes during galaxy formation. Strong gravitational lensing has been effective in the precise measurement of the dark-matter fraction inside massive early-type galaxies. Here, we com ...