DISPLAYTITLE:δ18O
In geochemistry, paleoclimatology and paleoceanography δ18O or delta-O-18 is a measure of the ratio of stable isotopes oxygen-18 (18O) and oxygen-16 (16O).
It is commonly used as a measure of the temperature of precipitation, as a measure of groundwater/mineral interactions, and as an indicator of processes that show isotopic fractionation, like methanogenesis.
In paleosciences, 18O:16O data from corals, foraminifera and ice cores are used as a proxy for temperature.
The definition is, in "per mil" (‰, parts per thousand):
‰
where the standard has a known isotopic composition, such as Vienna Standard Mean Ocean Water (VSMOW). The fractionation can arise from kinetic, equilibrium, or mass-independent fractionation.
Foraminifera shells are composed of calcium carbonate (CaCO3) and are found in many common geological environments. The ratio of 18O to 16O in the shell is used to indirectly determine the temperature of the surrounding water at the time the shell was formed. The ratio varies slightly depending on the temperature of the surrounding water, as well as other factors such as the water's salinity, and the volume of water locked up in ice sheets.
also reflects local evaporation and freshwater input, as rainwater is 16O-enriched—a result of the preferential evaporation of the lighter 16O from seawater. Consequently, the surface ocean contains greater proportions of 18O around the subtropics and tropics where there is more evaporation, and lesser proportions of 18O in the mid-latitudes where it rains more.
Similarly, when water vapor condenses, heavier water molecules holding 18O atoms tend to condense and precipitate first. The water vapor gradient heading from the tropics to the poles gradually becomes more and more depleted of 18O. Snow falling in Canada has much less H218O than rain in Florida; similarly, snow falling in the center of ice sheets has a lighter signature than that at its margins, since heavier 18O precipitates first.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores paleoclimate through ice cores, isotopes, and temperature reconstructions, highlighting the influence of Earth's orbit and greenhouse gases on climate patterns.
The temperature of the Earth is one of the most important climate parameters. Proxy records of past climate changes, in particular temperature, represent a fundamental tool for exploring internal climate processes and natural climate forcings. Despite the ...
A paleothermometer is a methodology that provides an estimate of the ambient temperature at the time of formation of a natural material. Most paleothermometers are based on empirically-calibrated proxy relationships, such as the tree ring or TEX86 methods. Isotope methods, such as the δ18O method or the clumped-isotope method, are able to provide, at least in theory, direct measurements of temperature. The isotopic ratio of 18O to 16O, usually in foram tests or ice cores. High values mean low temperatures.
Oxygen-18 (18O, Ω) is a natural, stable isotope of oxygen and one of the environmental isotopes. 18O is an important precursor for the production of fluorodeoxyglucose (FDG) used in positron emission tomography (PET). Generally, in the radiopharmaceutical industry, enriched water (H218O) is bombarded with hydrogen ions in either a cyclotron or linear accelerator, producing fluorine-18. This is then synthesized into FDG and injected into a patient. It can also be used to make an extremely heavy version of water when combined with tritium (hydrogen-3): 3H218O or T218O.
Isotopic reference materials are compounds (solids, liquids, gasses) with well-defined isotopic compositions and are the ultimate sources of accuracy in mass spectrometric measurements of isotope ratios. Isotopic references are used because mass spectrometers are highly fractionating. As a result, the isotopic ratio that the instrument measures can be very different from that in the sample's measurement. Moreover, the degree of instrument fractionation changes during measurement, often on a timescale shorter than the measurement's duration, and can depend on the characteristics of the sample itself.
Surface processes alter the water stable isotope signal of the surface snow after deposition. However, it remains an open question to which extent surface post-depositional processes should be considered when inferring past climate information from ice cor ...
The stable water isotopic composition in firn and ice cores provides valuable information on past climatic conditions. Because of uneven accumulation and post-depositional modifications on local spatial scales up to hundreds of meters, time series derived ...