Concept

Geodesic polyhedron

A geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry, such that they have 6 triangles at a vertex, except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra with mostly hexagonal faces. Geodesic polyhedra are a good approximation to a sphere for many purposes, and appear in many different contexts. The most well-known may be the geodesic domes, hemispherical architectural structures designed by Buckminster Fuller, which geodesic polyhedra are named after. Geodesic grids used in geodesy also have the geometry of geodesic polyhedra. The capsids of some viruses have the shape of geodesic polyhedra, and some pollen grains are based on geodesic polyhedra. Fullerene molecules have the shape of Goldberg polyhedra. Geodesic polyhedra are available as geometric primitives in the Blender 3D modeling software package, which calls them icospheres: they are an alternative to the UV sphere, having a more regular distribution. The Goldberg–Coxeter construction is an expansion of the concepts underlying geodesic polyhedra. In Magnus Wenninger's Spherical models, polyhedra are given geodesic notation in the form {3,q+}b,c, where {3,q} is the Schläfli symbol for the regular polyhedron with triangular faces, and q-valence vertices. The + symbol indicates the valence of the vertices being increased. b,c represent a subdivision description, with 1,0 representing the base form. There are 3 symmetry classes of forms: {3,3+}1,0 for a tetrahedron, {3,4+}1,0 for an octahedron, and {3,5+}1,0 for an icosahedron. The dual notation for Goldberg polyhedra is {q+,3}b,c, with valence-3 vertices, with q-gonal and hexagonal faces. There are 3 symmetry classes of forms: {3+,3}1,0 for a tetrahedron, {4+,3}1,0 for a cube, and {5+,3}1,0 for a dodecahedron. Values for b,c are divided into three classes: Class I (b=0 or c=0): {3,q+}b,0 or {3,q+}0,b represent a simple division with original edges being divided into b sub-edges.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (3)
Goldberg polyhedron
In mathematics, and more specifically in polyhedral combinatorics, a Goldberg polyhedron is a convex polyhedron made from hexagons and pentagons. They were first described in 1937 by Michael Goldberg (1902–1990). They are defined by three properties: each face is either a pentagon or hexagon, exactly three faces meet at each vertex, and they have rotational icosahedral symmetry. They are not necessarily mirror-symmetric; e.g. GP(5,3) and GP(3,5) are enantiomorphs of each other.
Triacontaèdre rhombique tronqué
Le triacontaèdre rhombique tronqué est un polyèdre convexe obtenu par troncature des 12 sommets du triacontaèdre rhombique où 5 faces se rejoignaient. Les 30 faces rhombiques (losanges) deviennent des hexagones non réguliers, et les 12 sommets tronqués deviennent des pentagones réguliers. Les faces hexagonales peuvent être équilatérales, mais non régulières par une symétrie D2. Pour chaque face hexagonale, les angles aux deux sommets de configuration 6.6.6 valent , et aux quatre sommets restants de configuration 5.
Icosaèdre tronqué
Licosaèdre tronqué est un solide d'Archimède. Il comprend 12 faces pentagonales régulières, 20 faces hexagonales régulières, 60 sommets et 90 arêtes. Ce polyèdre peut être construit à partir d'un icosaèdre (solide formé de 20 faces triangulaires régulières) avec une troncature des 12 sommets telle qu'un tiers de chaque arête est enlevé à chaque extrémité. Ceci crée 12 nouvelles faces pentagonales, et remplace les 20 faces triangulaires d'origine par des hexagones réguliers.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.