Concept

Lee wave

Summary
In meteorology, lee waves are atmospheric stationary waves. The most common form is mountain waves, which are atmospheric internal gravity waves. These were discovered in 1933 by two German glider pilots, Hans Deutschmann and Wolf Hirth, above the Krkonoše. They are periodic changes of atmospheric pressure, temperature and orthometric height in a current of air caused by vertical displacement, for example orographic lift when the wind blows over a mountain or mountain range. They can also be caused by the surface wind blowing over an escarpment or plateau, or even by upper winds deflected over a thermal updraft or cloud street. The vertical motion forces periodic changes in speed and direction of the air within this air current. They always occur in groups on the lee side of the terrain that triggers them. Sometimes, mountain waves can help to enhance precipitation amounts downwind of mountain ranges. Usually a turbulent vortex, with its axis of rotation parallel to the mountain range, is generated around the first trough; this is called a rotor. The strongest lee waves are produced when the lapse rate shows a stable layer above the obstruction, with an unstable layer above and below. Strong winds (with wind gusts over 100 mph [161 kmh]) can be created in the foothills of large mountain ranges by mountain waves. These strong winds can contribute to unexpected wildfire growth and spread (including the 2016 Great Smoky Mountains wildfires when sparks from a wildfire in the Smoky Mountains were blown into the Gatlinburg and Pigeon Forge areas). Lee waves are a form of internal gravity waves produced when a stable, stratified flow is forced over an obstacle. This disturbance elevates air parcels above their level of neutral buoyancy. Buoyancy restoring forces therefore act to excite a vertical oscillation of the perturbed air parcels at the Brunt-Väisäla frequency, which for the atmosphere is: where is the vertical profile of potential temperature. Oscillations tilted off the vertical axis at an angle of will occur at a lower frequency of .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.