In geometry, a plesiohedron is a special kind of space-filling polyhedron, defined as the Voronoi cell of a symmetric Delone set.
Three-dimensional Euclidean space can be completely filled by copies of any one of these shapes, with no overlaps. The resulting honeycomb will have symmetries that take any copy of the plesiohedron to any other copy.
The plesiohedra include such well-known shapes as the cube, hexagonal prism, rhombic dodecahedron, and truncated octahedron.
The largest number of faces that a plesiohedron can have is 38.
A set of points in Euclidean space is a Delone set if there exists a number such that every two points of are at least at distance apart from each other and such that every point of space is within distance of at least one point in . So fills space, but its points never come too close to each other. For this to be true, must be infinite.
Additionally, the set is symmetric (in the sense needed to define a plesiohedron) if, for every two points and of , there exists a rigid motion of space that takes to and to . That is, the symmetries of act transitively on .
The Voronoi diagram of any set of points partitions space into regions called Voronoi cells that are nearer to one given point of than to any other. When is a Delone set, the Voronoi cell of each point in is a convex polyhedron. The faces of this polyhedron lie on the planes that perpendicularly bisect the line segments from to other nearby points of .
When is symmetric as well as being Delone, the Voronoi cells must all be congruent to each other, for the symmetries of must also be symmetries of the Voronoi diagram. In this case, the Voronoi diagram forms a honeycomb in which there is only a single prototile shape, the shape of these Voronoi cells. This shape is called a plesiohedron. The tiling generated in this way is isohedral, meaning that it not only has a single prototile ("monohedral") but also that any copy of this tile can be taken to any other copy by a symmetry of the tiling.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
New fabrication technologies have significantly decreased the cost of fabrication of shapes with highly complex geometric structure. One important application of complex fine-scale geometric structures is to create variable effective elastic material prope ...
In geometry, the elongated dodecahedron, extended rhombic dodecahedron, rhombo-hexagonal dodecahedron or hexarhombic dodecahedron is a convex dodecahedron with 8 rhombic and 4 hexagonal faces. The hexagons can be made equilateral, or regular depending on the shape of the rhombi. It can be seen as constructed from a rhombic dodecahedron elongated by a square prism. Along with the rhombic dodecahedron, it is a space-filling polyhedron, one of the five types of parallelohedron identified by Evgraf Fedorov that tile space face-to-face by translations.
In geometry, a space-filling polyhedron is a polyhedron that can be used to fill all of three-dimensional space via translations, rotations and/or reflections, where filling means that; taken together, all the instances of the polyhedron constitute a partition of three-space. Any periodic tiling or honeycomb of three-space can in fact be generated by translating a primitive cell polyhedron. Any parallelepiped tessellates Euclidean 3-space, and more specifically any of five parallelohedra such as the rhombic dodecahedron, which is one of nine edge-transitive and face-transitive solids.
In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space. Honeycombs are usually constructed in ordinary Euclidean ("flat") space. They may also be constructed in non-Euclidean spaces, such as hyperbolic honeycombs.