In cryptanalysis and computer security, a dictionary attack is an attack using a restricted subset of a keyspace to defeat a cipher or authentication mechanism by trying to determine its decryption key or passphrase, sometimes trying thousands or millions of likely possibilities often obtained from lists of past security breaches.
A dictionary attack is based on trying all the strings in a pre-arranged listing. Such attacks originally used words found in a dictionary (hence the phrase dictionary attack); however, now there are much larger lists available on the open Internet containing hundreds of millions of passwords recovered from past data breaches. There is also cracking software that can use such lists and produce common variations, such as substituting numbers for similar-looking letters. A dictionary attack tries only those possibilities which are deemed most likely to succeed. Dictionary attacks often succeed because many people have a tendency to choose short passwords that are ordinary words or common passwords; or variants obtained, for example, by appending a digit or punctuation character. Dictionary attacks are often successful, since many commonly used password creation techniques are covered by the available lists, combined with cracking software pattern generation. A safer approach is to randomly generate a long password (15 letters or more) or a multiword passphrase, using a password manager program or manually typing a password.
It is possible to achieve a time–space tradeoff by pre-computing a list of hashes of dictionary words and storing these in a database using the hash as the key. This requires a considerable amount of preparation time, but this allows the actual attack to be executed faster. The storage requirements for the pre-computed tables were once a major cost, but now they are less of an issue because of the low cost of disk storage. Pre-computed dictionary attacks are particularly effective when a large number of passwords are to be cracked.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Emphasizes the significance of hashing, salting, and secure password storage in data security, highlighting the use of salt to prevent dictionary attacks and memory hard functions to slow down password cracking.
Advances in mobile computing have paved the way for new types of distributed applications that can be executed solely by mobile devices on Device-to-Device (D2D) ecosystems (e.g., crowdsensing). Sophisticated applications, like cryptocurrencies, need distr ...
A passphrase is a sequence of words or other text used to control access to a computer system, program or data. It is similar to a password in usage, but a passphrase is generally longer for added security. Passphrases are often used to control both access to, and the operation of, cryptographic programs and systems, especially those that derive an encryption key from a passphrase. The origin of the term is by analogy with password. The modern concept of passphrases is believed to have been invented by Sigmund N.
In cryptography, key stretching techniques are used to make a possibly weak key, typically a password or passphrase, more secure against a brute-force attack by increasing the resources (time and possibly space) it takes to test each possible key. Passwords or passphrases created by humans are often short or predictable enough to allow password cracking, and key stretching is intended to make such attacks more difficult by complicating a basic step of trying a single password candidate.
In cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a cryptographic hash function or block cipher). KDFs can be used to stretch keys into longer keys or to obtain keys of a required format, such as converting a group element that is the result of a Diffie–Hellman key exchange into a symmetric key for use with AES.
Current cryptographic solutions will become obsolete with the arrival of large-scale universal quantum computers. As a result, the National Institute of Standards and Technology supervises a post-quantum standardization process which involves evaluating ca ...
The failure of frictional interfaces - the process of frictional rupture - is widely assumed to feature crack-like properties, with far-reaching implications for various disciplines, ranging from engineering tribology to earthquake physics. An important co ...