Concept

Seventh power

In arithmetic and algebra the seventh power of a number n is the result of multiplying seven instances of n together. So: n7 = n × n × n × n × n × n × n. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power. The sequence of seventh powers of integers is: 0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 4782969, 10000000, 19487171, 35831808, 62748517, 105413504, 170859375, 268435456, 410338673, 612220032, 893871739, 1280000000, 1801088541, 2494357888, 3404825447, 4586471424, 6103515625, 8031810176, ... In the archaic notation of Robert Recorde, the seventh power of a number was called the "second sursolid". Leonard Eugene Dickson studied generalizations of Waring's problem for seventh powers, showing that every non-negative integer can be represented as a sum of at most 258 non-negative seventh powers (17 is 1, and 27 is 128). All but finitely many positive integers can be expressed more simply as the sum of at most 46 seventh powers. If powers of negative integers are allowed, only 12 powers are required. The smallest number that can be represented in two different ways as a sum of four positive seventh powers is 2056364173794800. The smallest seventh power that can be represented as a sum of eight distinct seventh powers is: The two known examples of a seventh power expressible as the sum of seven seventh powers are (M. Dodrill, 1999); and (Maurice Blondot, 11/14/2000); any example with fewer terms in the sum would be a counterexample to Euler's sum of powers conjecture, which is currently only known to be false for the powers 4 and 5.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.