Summary
In materials science, cross slip is the process by which a screw dislocation moves from one slip plane to another due to local stresses. It allows non-planar movement of screw dislocations. Non-planar movement of edge dislocations is achieved through climb. Since the Burgers vector of a perfect screw dislocation is parallel to the dislocation line, it has an infinite number of possible slip planes (planes containing the dislocation line and the Burgers vector), unlike an edge or mixed dislocation, which has a unique slip plane. Therefore, a screw dislocation can glide or slip along any plane that contains its Burgers vector. During cross slip, the screw dislocation switches from gliding along one slip plane to gliding along a different slip plane, called the cross-slip plane. The cross slip of moving dislocations can be seen by transmission electron microscopy. The possible cross-slip planes are determined by the crystal system. In body centered cubic (BCC) metals, a screw dislocation with b=0.5 can glide on {110} planes or {211} planes. In face centered cubic (FCC) metals, screw dislocations can cross-slip from one {111} type plane to another. However, in FCC metals, pure screw dislocations dissociate into two mixed partial dislocations on a {111} plane, and the extended screw dislocation can only glide on the plane containing the two partial dislocations. The Friedel-Escaig mechanism and the Fleischer mechanism have been proposed to explain the cross-slip of partial dislocations in FCC metals. In the Friedel-Escaig mechanism, the two partial dislocations constrict to a point, forming a perfect screw dislocation on their original glide plane, and then re-dissociate on the cross-slip plane creating two different partial dislocations. Shear stresses then may drive the dislocation to extend and move onto the cross-slip plane. Atomic simulations have confirmed the Friedel-Escaig mechanism. Alternatively, in the Fleischer mechanism, one partial dislocation is emitted onto the cross-slip plane, and then the two partial dislocations constrict on the cross-slip plane, creating a stair-rod dislocation.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (169)