Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular mechanics can be used to study molecule systems ranging in size and complexity from small to large biological systems or material assemblies with many thousands to millions of atoms.
All-atomistic molecular mechanics methods have the following properties:
Each atom is simulated as one particle
Each particle is assigned a radius (typically the van der Waals radius), polarizability, and a constant net charge (generally derived from quantum calculations and/or experiment)
Bonded interactions are treated as springs with an equilibrium distance equal to the experimental or calculated bond length
Variants on this theme are possible. For example, many simulations have historically used a united-atom representation in which each terminal methyl group or intermediate methylene unit was considered one particle, and large protein systems are commonly simulated using a bead model that assigns two to four particles per amino acid.
The following functional abstraction, termed an interatomic potential function or force field in chemistry, calculates the molecular system's potential energy (E) in a given conformation as a sum of individual energy terms.
where the components of the covalent and noncovalent contributions are given by the following summations:
The exact functional form of the potential function, or force field, depends on the particular simulation program being used. Generally the bond and angle terms are modeled as harmonic potentials centered around equilibrium bond-length values derived from experiment or theoretical calculations of electronic structure performed with software which does ab-initio type calculations such as Gaussian. For accurate reproduction of vibrational spectra, the Morse potential can be used instead, at computational cost.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanical force fields.
In the context of chemistry and molecular modelling, a force field is a computational method that is used to estimate the forces between atoms within molecules and also between molecules. More precisely, the force field refers to the functional form and parameter sets used to calculate the potential energy of a system of atoms or coarse-grained particles in molecular mechanics, molecular dynamics, or Monte Carlo simulations. The parameters for a chosen energy function may be derived from experiments in physics and chemistry, calculations in quantum mechanics, or both.
Molecular design software is notable software for molecular modeling, that provides special support for developing molecular models de novo. In contrast to the usual molecular modeling programs, such as for molecular dynamics and quantum chemistry, such software directly supports the aspects related to constructing molecular models, including: Molecular graphics interactive molecular drawing and conformational editing building polymeric molecules, crystals, and solvated systems partial charges development g
Covers classical force fields, molecular dynamics simulations, and supramolecular properties, including intramolecular and intermolecular interactions.
Explores cellular cytoskeleton components, including actin filaments and microtubules, and discusses solvent-free molecular dynamics and Monte Carlo simulations.
This course will discuss the main methods for the simulation of quantum time dependent properties for molecular systems. Basic notions of density functional theory will be covered. An introduction to
The main focus of this course is on the molecular interactions defining the structure, dynamics and function of biological systems. The principal experimental and computational techniques used in stru
The course gives an overview of atomistic simulation methods, combining theoretical lectures and hands-on sessions. It
covers the basics (molecular dynamics and monte carlo sampling) and also more adv
Base excision repair enzymes (BERs) detect and repair oxidative DNA damage with efficacy despite the small size of the defects and their often only minor structural impact. A charge transfer (CT) model for rapid scanning of DNA stretches has been evoked to ...
Accessing the thermal transport properties of glasses is a major issue for the design of production strategies of glass industry, as well as for the plethora of applications and devices where glasses are employed. From the computational standpoint, the che ...
We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...