Concept

Compatibility (geochemistry)

Compatibility is a term used by geochemists to describe how elements partition themselves in the solid and melt within Earth's mantle. In geochemistry, compatibility is a measure of how readily a particular trace element substitutes for a major element within a mineral. Compatibility of an ion is controlled by two things: its valence and its ionic radius. Both must approximate those of the major element for the trace element to be compatible in the mineral. For instance, olivine (an abundant mineral in the upper mantle) has the chemical formula (Mg,Fe)2SiO4. Nickel, with very similar chemical behaviour to iron and magnesium, substitutes readily for them and hence is very compatible in the mantle. Compatibility controls the partitioning of different elements during melting. The compatibility of an element in a rock is a weighted average of its compatibility in each of the minerals present. By contrast, an incompatible element is one that is least stable within its crystal structure. If an element is incompatible in a rock, it partitions into a melt as soon as melting begins. In general, when an element is referred to as being “compatible” without mentioning what rock it is compatible in, the mantle is implied. Thus incompatible elements are those that are enriched in the continental crust and depleted in the mantle. Examples include: rubidium, barium, uranium, and lanthanum. Compatible elements are depleted in the crust and enriched in the mantle, with examples nickel and titanium. Compatibility is commonly described by an element's distribution coefficient. A distribution coefficient describes how the solid and liquid phases of an element will distribute themselves in a mineral. Current studies of Earth's rare trace elements seek to quantify and examine the chemical composition of elements in the Earth's crust. There are still uncertainties in the understanding of the lower crust and upper mantle region of Earth's interior. In addition, numerous studies have focused on looking at the partition coefficients of certain elements in the basaltic magma to characterize the composition of oceanic crust.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.