Cyclin E is a member of the cyclin family. Cyclin E binds to G1 phase Cdk2, which is required for the transition from G1 to S phase of the cell cycle that determines initiation of DNA duplication. The Cyclin E/CDK2 complex phosphorylates p27Kip1 (an inhibitor of Cyclin D), tagging it for degradation, thus promoting expression of Cyclin A, allowing progression to S phase. Like all cyclin family members, cyclin E forms a complex with cyclin-dependent kinase (CDK2). Cyclin E/CDK2 regulates multiple cellular processes by phosphorylating numerous downstream proteins. Cyclin E/CDK2 plays a critical role in the G1 phase and in the G1-S phase transition. Cyclin E/CDK2 phosphorylates retinoblastoma protein (Rb) to promote G1 progression. Hyper-phosphorylated Rb will no longer interact with E2F transcriptional factor, thus release it to promote expression of genes that drive cells to S phase through G1 phase. Cyclin E/CDK2 also phosphorylates p27 and p21 during G1 and S phases, respectively. Smad3, a key mediator of TGF-β pathway which inhibits cell cycle progression, can be phosphorylated by cyclin E/CDK2. The phosphorylation of Smad3 by cyclin E/CDK2 inhibits its transcriptional activity and ultimately facilitates cell cycle progression. CBP/p300 and E2F-5 are also substrates of cyclin E/CDK2. Phosphorylation of these two proteins stimulates the transcriptional events during cell cycle progression. Cyclin E/CDK2 can phosphorylate p220(NPAT) to promote histone gene transcription during cell cycle progression. Apart from the function in cell cycle progression, cyclin E/CDK2 plays a role in the centrosome cycle. This function is performed by phosphorylating nucleophosmin (NPM). Then NPM is released from binding to an unduplicated centrosome, thereby triggering duplication. CP110 is another cyclin E/CDK2 substrate which involves in centriole duplication and centrosome separation. Cyclin E/CDK2 has also been shown to regulate the apoptotic response to DNA damage via phosphorylation of FOXO1. Over-expression of cyclin E correlates with tumorigenesis.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.