The n-vector representation (also called geodetic normal or ellipsoid normal vector) is a three-parameter non-singular representation well-suited for replacing geodetic coordinates (latitude and longitude) for horizontal position representation in mathematical calculations and computer algorithms.
Geometrically, the n-vector for a given position on an ellipsoid is the outward-pointing unit vector that is normal in that position to the ellipsoid. For representing horizontal positions on Earth, the ellipsoid is a reference ellipsoid and the vector is decomposed in an Earth-centered Earth-fixed coordinate system. It behaves smoothly at all Earth positions, and it holds the mathematical one-to-one property.
More in general, the concept can be applied to representing positions on the boundary of a strictly convex bounded subset of k-dimensional Euclidean space, provided that that boundary is a differentiable manifold. In this general case, the n-vector consists of k parameters.
A normal vector to a strictly convex surface can be used to uniquely define a surface position. n-vector is an outward-pointing normal vector with unit length used as a position representation.
For most applications the surface is the reference ellipsoid of the Earth, and thus n-vector is used to represent a horizontal position. Hence, the angle between n-vector and the equatorial plane corresponds to geodetic latitude, as shown in the figure.
A surface position has two degrees of freedom, and thus two parameters are sufficient to represent any position on the surface. On the reference ellipsoid, latitude and longitude are common parameters for this purpose, but like all two-parameter representations, they have singularities. This is similar to orientation, which has three degrees of freedom, but all three-parameter representations have singularities. In both cases the singularities are avoided by adding an extra parameter, i.e. to use n-vector (three parameters) to represent horizontal position and a unit quaternion (four parameters) to represent orientation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Geographical distance or geodetic distance is the distance measured along the surface of the earth. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic problem. Calculating the distance between geographical coordinates is based on some level of abstraction; it does not provide an exact distance, which is unattainable if one attempted to account for every irregularity in the surface of the earth.
Longitude (ˈlɒndʒᵻtjuːd, ˈlɒŋɡᵻ-) is a geographic coordinate that specifies the east–west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek letter lambda (λ). Meridians are imaginary semicircular lines running from pole to pole that connect points with the same longitude. The prime meridian defines 0° longitude; by convention the International Reference Meridian for the Earth passes near the Royal Observatory in Greenwich, south-east London on the island of Great Britain.
In geography, latitude is a coordinate that specifies the north–south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pole, with 0° at the Equator. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude and longitude are used together as a coordinate pair to specify a location on the surface of the Earth.
Context. It is now generally accepted that the near-infrared excess of Herbig AeBe stars originates in the dust of a circumstellar disk. Aims. The aims of this article are to infer the radial and vertical structure of these disks at scales of order 1 au, a ...
The output obtained from operando X-ray diffraction experiments on Ti-6Al-4V is used to verify the accuracy of four FEM models in predicting the temperature evolution of the solidified domain, the cooling rates of the alpha and beta phases, and the influen ...
ELSEVIER2021
,
The four ITER Electron Cyclotron Upper Launchers (UL) are designed to control Magneto-Hydrodynamic instabilities with the deposition of Electron Cyclotron power. According to the present design, each launcher comprises two rows of four input waveguides, wh ...