Peptide receptor radionuclide therapy (PRRT) is a type of radionuclide therapy, using a radiopharmaceutical that targets peptide receptors to deliver localised treatment, typically for neuroendocrine tumours (NETs).
A key advantage of PRRT over other methods of radiotherapy is the ability to target delivery of therapeutic radionuclides directly to the tumour or target site. This works because some tumours have an abundance (overexpression) of peptide receptors, compared to normal tissue. A radioactive substance can be combined with a relevant peptide (or its analogue) so that it preferentially binds to the tumour. With a gamma emitter as the radionuclide, the technique can be used for imaging with a gamma camera or PET scanner to locate tumours. When paired with alpha or beta emitters, therapy can be achieved, as in PRRT.
The current generation of PRRT targets somatostatin receptors, with a range of analogue materials such as octreotide and other DOTA compounds. These are combined with indium-111, lutetium-177 or yttrium-90 for treatment. 111In is primarily used for imaging alone, however in addition to its gamma emission there are also auger electrons emitted, which can have a therapeutic effect in high doses.
PRRT radiopharmaceuticals are constructed with three components; the radionuclide, chelator, and somatostatin analogue (peptide). The radionuclide delivers the actual therapeutic effect (or emission, such as photons, for imaging). The chelator is the essential link between the radionuclide and peptide. For 177Lu and 90Y this is typically DOTA (tetracarboxylic acid, and its variants) and DTPA (pentetic acid) for 111In. Other chelators known as NOTA (triazacyclononane triacetic acid) and HYNIC (hydrazinonicotinamide) have also been experimented with, albeit more for imaging applications. The somatostatin analogue affects biodistribution of the radionuclide, and therefore how effectively any treatment effect can be targeted. Changes affect which somatostatin receptor is most strongly targeted.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Neuroendocrine tumors (NETs) are neoplasms that arise from cells of the endocrine (hormonal) and nervous systems. They most commonly occur in the intestine, where they are often called carcinoid tumors, but they are also found in the pancreas, lung, and the rest of the body. Although there are many kinds of NETs, they are treated as a group of tissue because the cells of these neoplasms share common features, including a similar histological appearance, having special secretory granules, and often producing biogenic amines and polypeptide hormones.
Covers the development of the central nervous system and the secretion of growth hormone, along with the treatment of acromegaly using somatostatin analogs.
Introduction Primary paragangliomas (PG) of the spine are extremely rare entities. The present study reviews our experience over a period of 30 years. Methods This is a retrospective, single center, observational study. Patients surgically treated for a sp ...
2019
Objective Planned subtotal resection followed by Gamma Knife surgery (GKS) in patients with large vestibular schwannoma (VS) has emerged during the past decade, with the aim of a better functional outcome for facial and cochlear function. Methods We prospe ...
Introduction: Gangliogliomas (GG) are considered WHO grade I rare tumors. While they commonly manifest as temporal lobe epilepsy, they can be located anywhere in the brain. Primary treatment is complete microsurgical resection. Remnant or recurrent GG can ...