Key exchange (also key establishment) is a method in cryptography by which cryptographic keys are exchanged between two parties, allowing use of a cryptographic algorithm.
If the sender and receiver wish to exchange encrypted messages, each must be equipped to encrypt messages to be sent and decrypt messages received. The nature of the equipping they require depends on the encryption technique they might use. If they use a code, both will require a copy of the same codebook. If they use a cipher, they will need appropriate keys. If the cipher is a symmetric key cipher, both will need a copy of the same key. If it is an asymmetric key cipher with the public/private key property, both will need the other's public key.
Key exchange is done either in-band or out-of-band.
The key exchange problem describes ways to exchange whatever keys or other information are needed for establishing a secure communication channel so that no one else can obtain a copy. Historically, before the invention of public-key cryptography (asymmetrical cryptography), symmetric-key cryptography utilized a single key to encrypt and decrypt messages. For two parties to communicate confidentially, they must first exchange the secret key so that each party is able to encrypt messages before sending, and decrypt received ones. This process is known as the key exchange.
The overarching problem with symmetrical cryptography, or single-key cryptography, is that it requires a secret key to be communicated through trusted couriers, diplomatic bags, or any other secure communication channel. If two parties cannot establish a secure initial key exchange, they won't be able to communicate securely without the risk of messages being intercepted and decrypted by a third party who acquired the key during the initial key exchange.
Public-key cryptography uses a two-key system, consisting of the public and the private keys, where messages are encrypted with one key and decrypted with another. It depends on the selected cryptographic algorithm which key—public or private—is used for encrypting messages, and which for decrypting.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.
The goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
Explores the impact of COVID-19 on astronomy and the European Southern Observatory, delves into the Friedmann equations, and discusses the concept of dark energy.
Explores hazard assessment and risk management for waterway development, emphasizing the importance of making hazard maps and considering various intensity levels.
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Billions of people now have conversations daily over the Internet. A large portion of this communication takes place via secure messaging protocols that offer "end-to-end encryption'" guarantees and resilience to compromise like the widely-used Double Ratc ...
Key management refers to management of cryptographic keys in a cryptosystem. This includes dealing with the generation, exchange, storage, use, crypto-shredding (destruction) and replacement of keys. It includes cryptographic protocol design, key servers, user procedures, and other relevant protocols. Key management concerns keys at the user level, either between users or systems. This is in contrast to key scheduling, which typically refers to the internal handling of keys within the operation of a cipher.
Cryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
In cryptography, a secure channel is a means of data transmission that is resistant to overhearing and tampering. A confidential channel is a means of data transmission that is resistant to overhearing, or eavesdropping (e.g., reading the content), but not necessarily resistant to tampering (i.e., manipulating the content). An authentic channel is a means of data transmission that is resistant to tampering but not necessarily resistant to overhearing.
Since the advent of internet and mass communication, two public-key cryptographic algorithms have shared the monopoly of data encryption and authentication: Diffie-Hellman and RSA. However, in the last few years, progress made in quantum physics -- and mor ...
The Supersingular Isogeny Diffie-Hellman (SIDH) protocol has been the main and most efficient isogeny-based encryption protocol, until a series of breakthroughs led to a polynomial-time key-recovery attack. While some countermeasures have been proposed, th ...