Summary
Strontium titanate is an oxide of strontium and titanium with the chemical formula SrTiO3. At room temperature, it is a centrosymmetric paraelectric material with a perovskite structure. At low temperatures it approaches a ferroelectric phase transition with a very large dielectric constant ~104 but remains paraelectric down to the lowest temperatures measured as a result of quantum fluctuations, making it a quantum paraelectric. It was long thought to be a wholly artificial material, until 1982 when its natural counterpart—discovered in Siberia and named tausonite—was recognised by the IMA. Tausonite remains an extremely rare mineral in nature, occurring as very tiny crystals. Its most important application has been in its synthesized form wherein it is occasionally encountered as a diamond simulant, in precision optics, in varistors, and in advanced ceramics. The name tausonite was given in honour of Lev Vladimirovich Tauson (1917–1989), a Russian geochemist. Disused trade names for the synthetic product include strontium mesotitanate, Diagem, and Marvelite. This product is currently being marketed for its use in jewelry under the name Fabulite. Other than its type locality of the Murun Massif in the Sakha Republic, natural tausonite is also found in Cerro Sarambi, Concepción department, Paraguay; and along the Kotaki River of Honshū, Japan. SrTiO3 has an indirect band gap of 3.25 eV and a direct gap of 3.75 eV in the typical range of semiconductors. Synthetic strontium titanate has a very large dielectric constant (300) at room temperature and low electric field. It has a specific resistivity of over 109 Ω-cm for very pure crystals. It is also used in high-voltage capacitors. Introducing mobile charge carriers by doping leads to Fermi-liquid metallic behavior already at very low charge carrier densities. At high electron densities strontium titanate becomes superconducting below 0.35 K and was the first insulator and oxide discovered to be superconductive. Strontium titanate is both much denser (specific gravity 4.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.