Methionine (symbol Met or M) (mɪˈθaɪəniːn) is an essential amino acid in humans. As the precursor of other amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical role in the metabolism and health of many species, including humans. It is encoded by the codon AUG.
Methionine is also an important part of angiogenesis, the growth of new blood vessels. Supplementation may benefit those suffering from copper poisoning. Overconsumption of methionine, the methyl group donor in DNA methylation, is related to cancer growth in a number of studies. Methionine was first isolated in 1921 by John Howard Mueller.
Methionine (abbreviated as Met or M; encoded by the codon AUG) is an α-amino acid that is used in the biosynthesis of proteins. It contains a carboxyl group (which is in the deprotonated −COO− form under biological pH conditions), an amino group (which is in the protonated −NH3+ form under biological pH conditions) located in α-position with respect to the carboxyl group, and an S-methyl thioether side chain, classifying it as a nonpolar, aliphatic amino acid.
In nuclear genes of eukaryotes and in Archaea, methionine is coded for by the start codon, meaning it indicates the start of the coding region and is the first amino acid produced in a nascent polypeptide during mRNA translation.
Together with cysteine, methionine is one of two sulfur-containing proteinogenic amino acids. Excluding the few exceptions where methionine may act as a redox sensor (e.g.,), methionine residues do not have a catalytic role. This is in contrast to cysteine residues, where the thiol group has a catalytic role in many proteins. The thioether within methionine does however have a minor structural role due to the stability effect of S/π interactions between the side chain sulfur atom and aromatic amino acids in one-third of all known protein structures.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
This course will provide the fundamental knowledge in neuroscience required to
understand how the brain is organised and how function at multiple scales is
integrated to give rise to cognition and beh
Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. It contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain lysyl ((CH2)4NH2), classifying it as a basic, charged (at physiological pH), aliphatic amino acid. It is encoded by the codons AAA and AAG. Like almost all other amino acids, the α-carbon is chiral and lysine may refer to either enantiomer or a racemic mixture of both.
Cysteine (symbol Cys or C; ˈsɪstɪiːn) is a semiessential proteinogenic amino acid with the formula . The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. Cysteine is chiral, only L-cysteine is found in nature. The thiol is susceptible to oxidation to give the disulfide derivative cystine, which serves an important structural role in many proteins. In this case, the symbol Cyx is sometimes used. The deprotonated form can generally be described by the symbol Cym as well.
In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles.
Presents a case study of a 61-year-old woman with macrocytic anemia and vitamin D deficiency, exploring diagnosis, treatment, and neurological symptoms.
Explores protein folding, amino acids, RNA translation, and attractive forces, emphasizing the importance of native state conformation and compact structures.
Explores microbial pathways for carbon fixation and the production of key metabolites.
In this work, two novel well-defined Cu (I) complexes of a Schiff base ligand are described. For this purpose, N, N '-bis (trans-cinnamaldehyde) ethylenediimine [C20H20N2] (L) and Cu (I) complex of the type [CuC20H20N2)PPh3Cl] (C1) and [Cu(C20H20N2)PPh3Br] ...
In the biosynthesis of the iron-guanylylpyridinol (FeGP) cofactor, 6-carboxymethyl-5-methyl-4-hydroxy-2-pyridinol (1) is 3-methylated to form 2, then 4-guanylylated to form 3, and converted into the full cofactor. HcgA-G proteins catalyze the biosynthetic ...
WILEY-V C H VERLAG GMBH2022
The last decade has seen a strong proliferation of therapeutic strategies for the treatment of metabolic and age-related diseases based on increasing cellular NAD(+) bioavailability. Among them, the dietary supplementation with NAD(+) precursors-classicall ...