The history of electromagnetic theory begins with ancient measures to understand atmospheric electricity, in particular lightning. People then had little understanding of electricity, and were unable to explain the phenomena. Scientific understanding into the nature of electricity grew throughout the eighteenth and nineteenth centuries through the work of researchers such as Coulomb, Ampère, Faraday and Maxwell.
In the 19th century it had become clear that electricity and magnetism were related, and their theories were unified: wherever charges are in motion electric current results, and magnetism is due to electric current. The source for electric field is electric charge, whereas that for magnetic field is electric current (charges in motion).
The knowledge of static electricity dates back to the earliest civilizations, but for millennia it remained merely an interesting and mystifying phenomenon, without a theory to explain its behavior, and it was often confused with magnetism. The ancients were acquainted with rather curious properties possessed by two minerals, amber (ἤλεκτρον, ēlektron) and magnetic iron ore (μαγνῆτις λίθος magnētis lithos, "the Magnesian stone, lodestone"). Amber, when rubbed, attracts lightweight objects, such as feathers; magnetic iron ore has the power of attracting iron.
Based on his find of an Olmec hematite artifact in Central America, the American astronomer John Carlson has suggested that "the Olmec may have discovered and used the geomagnetic lodestone compass earlier than 1000 BC". If true, this "predates the Chinese discovery of the geomagnetic lodestone compass by more than a millennium". Carlson speculates that the Olmecs may have used similar artifacts as a directional device for astrological or geomantic purposes, or to orient their temples, the dwellings of the living or the interments of the dead. The earliest Chinese literature reference to magnetism lies in a 4th-century BC book called Book of the Devil Valley Master (鬼谷子): "The lodestone makes iron come or it attracts it.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Timeline of electromagnetism and classical optics lists, within the history of electromagnetism, the associated theories, technology, and events. 28th century BC – Ancient Egyptian texts describe electric fish. They refer to them as the "Thunderer of the Nile", and described them as the "protectors" of all other fish. 6th century BC – Greek philosopher Thales of Miletus observes that rubbing fur on various substances, such as amber, would cause an attraction between the two, which is now known to be caused by static electricity.
A History of the Theories of Aether and Electricity is any of three books written by British mathematician Sir Edmund Taylor Whittaker FRS FRSE on the history of electromagnetic theory, covering the development of classical electromagnetism, optics, and aether theories. The book's first edition, subtitled from the Age of Descartes to the Close of the Nineteenth Century, was published in 1910 by Longmans, Green. The book covers the history of aether theories and the development of electromagnetic theory up to the 20th century.
Optics began with the development of lenses by the ancient Egyptians and Mesopotamians, followed by theories on light and vision developed by ancient Greek philosophers, and the development of geometrical optics in the Greco-Roman world. The word optics is derived from the Greek term τα ὀπτικά meaning 'appearance, look'. Optics was significantly reformed by the developments in the medieval Islamic world, such as the beginnings of physical and physiological optics, and then significantly advanced in early modern Europe, where diffractive optics began.
Explores Maxwell's equations, magnetic flux, induction law, and induced currents.
The evolution of electronics has largely relied on downscaling to meet the continuous needs for faster and highly integrated devices(1). As the channel length is reduced, however, classic electronic devices face fundamental issues that hinder exploiting ma ...
The development of new industrial applications has diverted the focus of research towards compacter and faster rotatory drives. These requirements push the classical ball-bearings of electric motors to the limits in terms of operational lifetime and fricti ...
In the present paper, we show, by means of numerical simulations, that electromagnetic field data obtained from the radiation of a return-stroke lightning discharge and measured over a short-duration time-window can be exploited to reconstruct the attenuat ...