In quantum computing, quantum memory is the quantum-mechanical version of ordinary computer memory. Whereas ordinary memory stores information as binary states (represented by "1"s and "0"s), quantum memory stores a quantum state for later retrieval. These states hold useful computational information known as qubits. Unlike the classical memory of everyday computers, the states stored in quantum memory can be in a quantum superposition, giving much more practical flexibility in quantum algorithms than classical information storage. Quantum memory is essential for the development of many devices in quantum information processing, including a synchronization tool that can match the various processes in a quantum computer, a quantum gate that maintains the identity of any state, and a mechanism for converting predetermined photons into on-demand photons. Quantum memory can be used in many aspects, such as quantum computing and quantum communication. Continuous research and experiments have enabled quantum memory to realize the storage of qubits. The interaction of quantum radiation with multiple particles has sparked scientific interest over the past decade. Quantum memory is one such field, mapping the quantum state of light onto a group of atoms and then restoring it to its original shape. Quantum memory is a key element in information processing, such as optical quantum computing and quantum communication, while opening a new way for the foundation of light-atom interaction. However, restoring the quantum state of light is no easy task. While impressive progress has been made, researchers are still working to make it happen. Quantum memory based on the quantum exchange to store photon qubits has been demonstrated to be possible. Kessel and Moiseev discussed quantum storage in the single photon state in 1993. The experiment was analyzed in 1998 and demonstrated in 2003. In summary, the study of quantum storage in the single photon state can be regarded as the product of the classical optical data storage technology proposed in 1979 and 1982, an idea inspired by the high density of data storage in the mid-1970s.