Concept

Théorème de Gelfond-Schneider

In mathematics, the Gelfond–Schneider theorem establishes the transcendence of a large class of numbers. It was originally proved independently in 1934 by Aleksandr Gelfond and Theodor Schneider. If a and b are complex algebraic numbers with a ≠ 0, 1, and b not rational, then any value of ab is a transcendental number. The values of a and b are not restricted to real numbers; complex numbers are allowed (here complex numbers are not regarded as rational when they have an imaginary part not equal to 0, even if both the real and imaginary parts are rational). In general, ab = exp(b ln a) is multivalued, where ln stands for the natural logarithm. This accounts for the phrase "any value of" in the theorem's statement. An equivalent formulation of the theorem is the following: if α and γ are nonzero algebraic numbers, and we take any non-zero logarithm of α, then (log γ)/(log α) is either rational or transcendental. This may be expressed as saying that if log α, log γ are linearly independent over the rationals, then they are linearly independent over the algebraic numbers. The generalisation of this statement to more general linear forms in logarithms of several algebraic numbers is in the domain of transcendental number theory. If the restriction that a and b be algebraic is removed, the statement does not remain true in general. For example, Here, a is , which (as proven by the theorem itself) is transcendental rather than algebraic. Similarly, if a = 3 and b = (log 2)/(log 3), which is transcendental, then ab = 2 is algebraic. A characterization of the values for a and b which yield a transcendental ab is not known. Kurt Mahler proved the p-adic analogue of the theorem: if a and b are in Cp, the completion of the algebraic closure of Qp, and they are algebraic over Q, and if and then is either rational or transcendental, where logp is the p-adic logarithm function. The transcendence of the following numbers follows immediately from the theorem: Gelfond–Schneider constant and its square root Gelfond's constant The Gelfond–Schneider theorem answers affirmatively Hilbert's seventh problem.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.