Pál Turán (ˈpaːl ˈturaːn; 18 August 1910 – 26 September 1976) also known as Paul Turán, was a Hungarian mathematician who worked primarily in extremal combinatorics.
In 1940, because of his Jewish origins, he was arrested by the Nazis and sent to a labour camp in Transylvania, later being transferred several times to other camps. While imprisoned, Turán came up with some of his best theories, which he was able to publish after the war.
Turán had a long collaboration with fellow Hungarian mathematician Paul Erdős, lasting 46 years and resulting in 28 joint papers.
Turán was born into a Jewish family in Budapest on 18 August 1910. Pál's outstanding mathematical abilities showed early, already in secondary school he was the best student.
At the same period of time, Turán and Pál Erdős were famous answerers in the journal KöMaL. On 1 September 1930, at a mathematical seminar at the University of Budapest, Turan met Erdős. They would collaborate for 46 years and produce 28 scientific papers together.
Turán received a teaching degree at the University of Budapest in 1933. In the same year he published two major scientific papers in the journals of the American and London Mathematical Societies. He got the PhD degree under Lipót Fejér in 1935 at Eötvös Loránd University.
As a Jew, he fell victim to numerus clausus, and could not get a stable job for several years. He made a living as a tutor, preparing applicants and students for exams. It was not until 1938 that he got a job at a rabbinical training school in Budapest as a teacher's assistant, by which time he had already had 16 major scientific publications and an international reputation as one of Hungary's leading mathematicians.
He married Edit (Klein) Kóbor in 1939; they had one son, Róbert.
In September 1940 Turán was interned in labour service. As he recalled later, his five years in labour camps eventually saved his life: they saved him from ending up in a concentration camp, where 550,000 of the 770,000 Hungarian Jews were murdered during World War II.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G. For instance, a graph is planar if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with few crossings makes it easier for people to understand the drawing.
Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local substructure.
In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set. Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete bipartite graphs were already printed as early as 1669, in connection with an edition of the works of Ramon Llull edited by Athanasius Kircher.
We introduce the Turan problem for edge ordered graphs. We call a simple graph edge ordered, if its edges are linearly ordered. An isomorphism between edge ordered graphs must respect the edge order. A subgraph of an edge ordered graph is itself an edge or ...
Let F be a graph. A hypergraph is called Berge-F if it can be obtained by replacing each edge in F by a hyperedge containing it. Let F be a family of graphs. The Turan number of the family Berge-F is the maximum possible number of edges in an r-uniform hyp ...